| Student Name:                                                                                                      | Score:     |
|--------------------------------------------------------------------------------------------------------------------|------------|
| Answer key                                                                                                         |            |
| Balls in a contain                                                                                                 | er         |
|                                                                                                                    | Work Space |
| There are 5 white balls, 8 red balls, 7 yellow balls and 4 green balls in a container. A ball is chosen at random. |            |
| What is the probability of choosing red?                                                                           |            |
| Answer: $\frac{1}{3}$                                                                                              |            |
| What is the probability of choosing green?                                                                         |            |
| Answer: $\frac{1}{6}$                                                                                              |            |
| What is the probability of choosing either red or white?                                                           |            |
| Answer: 13/24                                                                                                      |            |
| What is the probability of choosing neither white nor green?                                                       |            |
| Answer: $\frac{5}{8}$                                                                                              |            |
| What is the probability of choosing a ball other than yellow?                                                      |            |
| Answer: 17/24                                                                                                      |            |
| What is the probability of choosing black?                                                                         |            |
| Answer: 0                                                                                                          |            |



## PROBABILITY PROBLEMS

## **SOLUTIONS**

- 1 Probability can be recorded in words or using fractions, decimals or percentages.
  - There is only one card showing a 6.

    P(the number 6) = 1 in 20  $= \frac{1}{20}$  = 0.05 = 5%There are 6 multiples of 3:  $\{3, 6, 9, 12, 15, 18\}$  P(multiple of 3) = 6 in 20 or 3 in 10  $= \frac{6}{20} \text{ or } \frac{3}{10}$  = 0.3 = 30%The prime numbers are:

    d This is the complement of selecting a prime.
  - The prime numbers are:  $\{2, 3, 5, 7, 11, 13, 17, 19\}$  P(prime number) = 8 in 20 or 2 in 5  $= \frac{8}{20} \text{ or } \frac{2}{5}$ d This is the **complement** of selecting a prime. Use the probability of selecting a prime number. The probabilities add to 1. P(not prime) = 1 - P(prime)3

$$P(\text{not prime}) = 1 - P(\text{prime})$$

$$= \frac{3}{5}$$

$$= 0.6$$

$$= 60\%$$

**2** The favourable outcomes are {3, 13, 23, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43}

=40%

P(at least one 3) = 14 out of 45  
= 
$$\frac{14}{45}$$
  
= 0.3i (Note the repeater sign meaning 0.3111111111111...)  
=  $31\frac{1}{9}\%$  or  $31.1\%$ 

**3** The three probabilities must add to 1.

$$\frac{1}{2} + \frac{1}{3} = \frac{3}{6} + \frac{2}{6}$$

$$= \frac{5}{6}$$

$$1 - \frac{5}{6} = \frac{1}{6}$$
P(yellow) =  $\frac{1}{6}$ 

4 If there is a 75% chance of selecting a red beetle then there is a 25% chance of selecting a blue beetle.

$$75\% = 24$$
 red beetles

$$25\% = 8$$
 blue beetles

$$100\% = 32$$
 beetles

There are 32 beetles altogether.



5 Arun's favourable outcomes are  $\{1, 2, 3, 4, 5, 6, 7\}$ .

Sally's favourable outcomes are  $\{1, 2, 3, 4, 5\}$ .

$$P(Arun winning) = \frac{7}{9}$$

$$P(Sally winning) = \frac{5}{6}$$

To compare the two fractions, you can convert them to decimals, percentages or fractions with common denominators.

| Decimals                 | Percentages            | Fractions                     |  |
|--------------------------|------------------------|-------------------------------|--|
| $\frac{7}{9} = 0.7$      | $\frac{7}{9} = 77.7\%$ | $\frac{7}{9} = \frac{14}{18}$ |  |
| $\frac{5}{6}=0.8\dot{3}$ | $\frac{5}{6} = 83.3\%$ | $\frac{5}{6} = \frac{15}{18}$ |  |

Sally has the greater chance of winning.

6 One in five means there were originally 5 dark chocolates out of 25.

After one dark chocolate is eaten, there are 4 dark chocolates out of 24.

$$P(dark) = \frac{4}{24} \text{ or } \frac{1}{6}$$
  
= 0.16  
= 16.6%

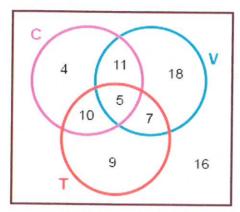


## PROBABILITIES FROM DATA DISPLAYS

#### **SOLUTIONS**

TASK 1

# Use a Venn diagram to find probabilities

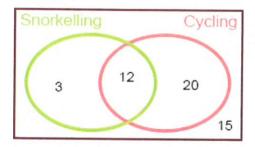


There are 80 members in the travel club.

- **a** P(did not visit any of the 3 countries) =  $\frac{16}{80} = \frac{1}{5}$
- **b** P(visited all 3 countries) =  $\frac{5}{80} = \frac{1}{16}$
- **c** P(visited China) =  $\frac{30}{80} = \frac{3}{8}$
- **d** P(only visited China) =  $\frac{4}{80} = \frac{1}{20}$
- e P(visited at least 2 of the countries) =  $\frac{11+5+7+10}{80} = \frac{33}{80}$
- **f** P(visited only one country) =  $\frac{4+18+9}{80} = \frac{31}{80}$
- **g** P(visited Vietnam and Thailand but not China) =  $\frac{7}{80}$

#### TASK 2

# Create a diagram or table to find probabilities



|                 | Cycling | Not cycling | Totals |
|-----------------|---------|-------------|--------|
| Snorkelling     | 12      | 3           | 15     |
| Not snorkelling | 20      | 15          | 35     |
|                 |         |             |        |

Sport

18

50

a P(cycling but not snorkelling) =  $\frac{20}{50}$ =  $\frac{2}{5}$ b P(only one of these sports) =  $\frac{20+3}{50}$ =  $\frac{23}{50}$ c P(at least one of the sports) =  $\frac{20+3+12}{50}$ =  $\frac{35}{50}$ =  $\frac{7}{10}$ d P(neither of the sports) =  $\frac{15}{50}$ =  $\frac{3}{10}$ 

**Totals** 



TASK 3

# Use a two-way table to find probabilities

#### Janine's books

|           | Fiction | Non-fiction | Totals |
|-----------|---------|-------------|--------|
| Hardcover | 13      | 44          | 57     |
| Softcover | 89      | 7           | 96     |
| Totals    | 102     | 51          | 153    |

| а | 133                                                        | b | $P(hardcover) = \frac{57}{153}$                                     |
|---|------------------------------------------------------------|---|---------------------------------------------------------------------|
|   | $=\frac{2}{3}$                                             |   | $=\frac{19}{51}$                                                    |
| С | $P(\text{non-fiction}) = \frac{51}{153}$                   | d | $P(\text{softcover}) = \frac{96}{153}$                              |
|   | $=\frac{1}{3}$                                             |   | $=\frac{32}{51}$                                                    |
| е | P(fiction and hardcover) = $\frac{13}{153}$                | f | P(non-fiction and softcover) = $\frac{7}{153}$                      |
| g | P(fiction and softcover) = $\frac{89}{153}$                | h | P(neither fiction nor hardcover) = $\frac{7}{153}$                  |
| i | P(either fiction or softcover) = $\frac{13+7+89}{153}$     | j | P(either non-fiction or softcover) = $\frac{44+7+89}{153}$          |
|   | $=\frac{109}{153}$                                         |   | $=\frac{140}{153}$                                                  |
|   | Also, this is the complement of:                           |   | Also, this is the complement of:                                    |
|   | P(non-fiction and hardcover) = $\frac{44}{153}$            |   | P(fiction and hardcover) = $\frac{13}{153}$                         |
|   | So you can use: $1 - \frac{44}{153} = \frac{109}{153}$     |   | So you can use: $1 - \frac{13}{153} = \frac{140}{153}$              |
| k | There are 96 softcover books. $P(fiction) = \frac{89}{96}$ | 1 | There are 102 fiction books. $P(\text{softcover}) = \frac{89}{102}$ |
|   | 90                                                         |   | 102                                                                 |



#### ADDITION RULE OF PROBABILITY

## **SOLUTIONS**

# TASK 1 100 marbles and non-mutually exclusive (intersecting) sets

1  $100 \div 5 = 20$  and so there are 20 multiples of 5 in the jar.

P(multiple of 5) = 
$$\frac{20}{100}$$

2  $100 \div 8 = 12.5$  and so there are 12 multiples of 8 in the jar.

P(multiple of 8) = 
$$\frac{12}{100}$$

3 The first multiple of 5 and 8 is 40.

The next multiple of 5 and 8 is 80.

There are 2 multiples of 5 and 8 in the jar.

P(multiple of 5 and 8) = 
$$\frac{2}{100}$$

4 : P(multiple of 5 or 8) = P(multiple of 5) + P(multiple of 8) - P(multiple of 5 and 8)

$$= \frac{20}{100} + \frac{12}{100} - \frac{2}{100}$$
$$= \frac{30}{100}$$

$$= 0.3$$

# TASK 2 100 marbles and mutually exclusive (non-intersecting) sets

There are 4 numbers between 85 and 90.

There are 10 square numbers in the jar. (The smallest is  $1^2 = 1$  and the largest is  $10^2 = 100$ .)

P(number is between 85 and 90 or a square) = P(number between 85 and 90) + P(a square number)

$$= \frac{4}{100} + \frac{10}{100}$$
$$= \frac{14}{100}$$
$$= 0.14$$

## CHALLENGE

Roll a six

*Note*: A probability tree showing this information is not symmetrical. Once Milu rolls a 6, she doesn't have another roll. So the tree branches out each step from the lower branch only (not 6).

1st roll 2nd roll 3rd roll 4th roll ... 
$$\frac{1}{6} \quad 6$$

$$\frac{1}{6} \quad 6$$
Not 6 
$$\frac{1}{6} \quad 6$$
Not 6 
$$\frac{5}{6} \quad \text{Not } 6$$

1 
$$P(6) = \frac{1}{6}$$

**2** P(not 6, 6) = 
$$\frac{5}{6} \times \frac{1}{6} = \frac{5}{36}$$

3 P(not 6, not 6, 6) = 
$$\frac{5}{6} \times \frac{5}{6} \times \frac{1}{6} = \frac{25}{216}$$

4 The pattern shows repeated factors of 
$$\frac{5}{6}$$
 followed by one factor of  $\frac{1}{6}$ .

**a** (P not getting 6 until 10th roll) = 
$$\frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \dots \times \frac{5}{6} \times \frac{1}{6}$$
 [There are 9 factors of  $\frac{5}{6}$  here.]  
=  $(\frac{5}{6})^9 \times \frac{1}{6}$ 

**b** (P not getting 6 until 24th roll) = 
$$\frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \dots \times \frac{5}{6} \times \frac{1}{6}$$
 [There are 24 factors of  $\frac{5}{6}$  here.]  
=  $(\frac{5}{6})^{24} \times \frac{1}{6}$ 



# 8.6B+8.7 Beyond simple tree diagrams & independent events

TASK 2 Coin flips

1 **a** P(H) = 
$$\frac{3}{4}$$

**b** 
$$P(T) = \frac{1}{4}$$

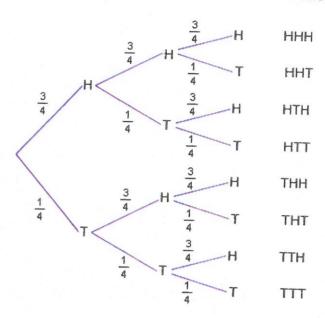
2 See diagram.

3 a P(HHH) = 
$$\frac{3}{4} \times \frac{3}{4} \times \frac{3}{4}$$
  
=  $\frac{27}{64}$ 

**b** 
$$P(TTT) = \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4}$$
  
=  $\frac{1}{64}$ 

$$\mathbf{c} \quad P(HHT) = \frac{3}{4} \times \frac{3}{4} \times \frac{1}{4}$$
$$= \frac{9}{64}$$

1st toss 2nd toss 3rd toss Outcomes



d P(2 heads and 1 tail in any order) = P(HHT) + P(HTH) + P(THH)  
= 
$$(\frac{3}{4} \times \frac{3}{4} \times \frac{1}{4}) + (\frac{3}{4} \times \frac{1}{4} \times \frac{3}{4}) + (\frac{1}{4} \times \frac{3}{4} \times \frac{3}{4})$$
  
=  $\frac{9}{64} + \frac{9}{64} + \frac{9}{64}$   
=  $\frac{27}{64}$ 



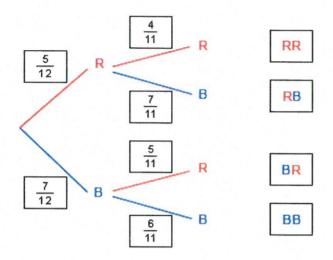
#### PROBABILITY TREES WITHOUT REPLACEMENT

# **SOLUTIONS**

#### TASK 1 Counter counting

Since you do not replace the first counter in the bag before taking the second one, the numerators and denominators of the fraction probabilities will change from step 1 to step 2. This is called selection without replacement.

1 1st counter 2nd counter Outcomes



2 **a** P(BB) = 
$$\frac{7}{12} \times \frac{6}{11}$$
  
=  $\frac{7}{22}$ 

b P(two counters same colour) = P(RR) + P(BB)  
= 
$$(\frac{5}{12} \times \frac{4}{11}) + \frac{7}{22}$$
  
=  $\frac{5}{33} + \frac{7}{22}$   
=  $\frac{31}{66}$ 

c P(different colours) = P(RB) + P(BR)  
= 
$$(\frac{5}{12} \times \frac{7}{11}) + (\frac{7}{12} \times \frac{5}{11})$$
  
=  $\frac{35}{132} + \frac{35}{132}$   
=  $\frac{35}{66}$ 





TASK 2 Flavour challenge

1 
$$n(O) = \frac{1}{2} \times 20 = 10$$

$$n(L) = \frac{2}{5} \times 20 = 8$$

$$n(L) = \frac{2}{5} \times 20 = 8$$
  $n(M) = 20 - 10 - 8 = 2$ 

:. 
$$P(M) = \frac{2}{20} = \frac{1}{10}$$

See diagram.

Note: This question involves dependent events, so the fractional probabilities on the branches change from step to step.

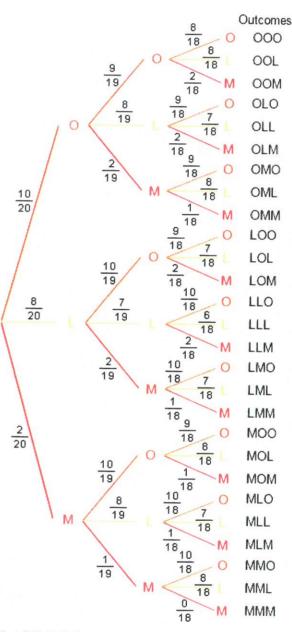
3 P(L then M) = 
$$\frac{8}{20} \times \frac{2}{19}$$
  
=  $\frac{16}{380}$   
=  $\frac{4}{95}$ 

4 P(L and M, in any order)

= 
$$P(LM) + P(ML)$$
  
=  $(\frac{8}{20} \times \frac{2}{19}) + (\frac{2}{20} \times \frac{8}{19})$   
=  $\frac{32}{380}$   
=  $\frac{8}{95}$ 

5 
$$P(MMM) = \frac{2}{20} \times \frac{1}{19} \times \frac{0}{18}$$
  
= 0

*Note*: P(MMM) = 0 means that it is impossible to get 3 mandarin jubes—there are only 2 mandarin jubes in the packet.



P(all three jubes the same colour) = P(OOO) + P(LLL) + P(MMM) $= \left(\frac{10}{20} \times \frac{9}{19} \times \frac{8}{18}\right) + \left(\frac{8}{20} \times \frac{7}{19} \times \frac{6}{18}\right) + 0$  $=\frac{720}{6840}+\frac{336}{6840}$  $=\frac{44}{285}$