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Abstract

Mathematics bridging courses serve an increasingly critical stop-gap role in edu-
cational systems globally, providing a pathway into mathematical higher education
for students who may otherwise be blocked from pursuing such education. This
is particularly critical for already disadvantaged students who may be at increased
risk of being denied access to mathematical higher education. Mathematical higher
education, including �elds of study other than mathematics that require a degree
of mathematical competency such as science, engineering, and medicine, is rising
in demand. Yet participation in higher level mathematics education in high school
has been in steady decline for over three decades, in no small way due to negative
perceptions of mathematics help by the public.

In this work, the challenges faced by mathematics bridging courses are considered
in general, and in the speci�c Australian context of the University of Adelaide (UofA)
mathematics bridging courses o�ered through the Maths Learning Centre (MLC):
MathsStart and MathsTrack. Potential improvements to the bridging courses are
investigated through two avenues of research. First, a literature review puts bridging
courses into context: their role in education and in society more broadly, challenges
they face, and potential approaches to addressing these challenges. Secondly the
content taught in the Australian senior secondary high school curricula is mapped to
the content of the bridging courses, and alignment of this content to the actual future
needs of the students in their continued study is discussed. Finally, recommendations
are made for improvements that could be made to the bridging courses, and good
practices that could be generalised to bridging courses more broadly across Australia
and internationally.
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Chapter 1

Introduction

This thesis is concerned with the mathematics bridging courses o�ered at the Univer-
sity of Adelaide (UofA) through the Maths Learning Centre (MLC): MathsStart and
MathsTrack. These courses are intended to take students with very little mathemat-
ics background and help them transition into tertiary education (which will generally
have some mathematics pre-requisites or assumed knowledge) and to be successful
there. MathsStart and MathsTrack are structured to be student-paced, with no dead-
lines having been set apriori, in a deliberate attempt to both alleviate test-anxiety,
and to acclimatise students to a learning environment in which the primary onus for
motivation is on the students. Although the bridging courses are o�ered through the
MLC at the UofA, the cohort of students come from a very diverse set of backgrounds
and have a variety of needs. The majority of students enrolling in these courses are
planning to continue into tertiary education at the UofA, but many students do not
intend to continue into tertiary education at all, and instead enrol in the bridging
courses to meet the requisite assumed knowledge for other pathways � pilot training
in the defence forces, for example.

The continuing decline of interest in mathematics along with the sustained trend
of increased demand for mathematically skilled graduates by several major leading
industries in Australia and globally (engineering, science, medicine, ...) means that
bridging courses are playing an increasingly important role in our education system.
See Chapter 3 for a more detailed discussion. Although MathsStart and MathsTrack
have been successful so far, as educators we are continually engaging in re�ective
practice and looking for ways to improve our teaching practice. It is in this frame
of mind, and with the knowledge that a comprehensive review of the purpose, struc-
ture, and content of MathsStart and MathsTrack has not yet been done, that in
collaboration with the MLC we constructed the �guiding question� for this work:

How can MathsStart and MathsTrack be improved?

Naturally, this vague statement invites questions such as �how is improvement
measured?�, and �improvement in what outcome?�. The question is left deliberately
vague in this way because part of this work will be dedicated to teasing apart the
di�erent possible interpretations, the importance of taking care when interpreting
improvement in an educational context, and the consequences of di�erent interpre-
tations. A solution is not proposed, only alternatives and their consequences, with
comments on the stakeholders in each case. One important perspective of this ques-
tion that will be represented heavily in this thesis can be shown by a re-phrasing of
the question:
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How can MathsStart and MathsTrack best help the students enrolling in
them to be successful going forward?

Of course this does not necessarily make the question any less vague � determin-
ing what is in the best interests of our students, is not always clear or straightforward.
Nonetheless, this question will be the primary focus of this thesis and despite not
being able to give any de�nitive answers, some suggestions and recommendations
will be made. At the very least, some context will be given for better understanding
the question. It is important to note that although the focus of this work is the
courses MathsStart and MathsTrack, much of the contextual background presented
herein is relevant to bridging courses across Australia and internationally. Although
it is not the primary goal of this work, giving some broad structure and perhaps a
framework for understanding the needs of students going into mathematics bridging
programs globally could be thought of as a secondary (perhaps ancillary) objective
of this work.

In order to address the guiding question above, this thesis will be structured as
follows:

• The remainder of this introductory chapter (Chapter 1) is broken into two
sections. First, the purpose, structure, and context of mathematics bridging
courses is explored both in general, and in the speci�c context of the UofA
(Section 1.1). Second, a broad educational framework is introduced in Sec-
tion 1.2 which can be used to give high-level context for the work that will be
done in this thesis, motivating the structure of the work and outlining the key
areas of importance and how they interact with one another.

• Chapter 2 provides a brief description of the methodology employed in the
research that will be presented in Chapters 3 and 4.

• An in-depth discussion of the existing literature is presented in Chapter 3: what
is known, approaches attempted in the past both in Australia and internation-
ally, frameworks proposed for understanding the secondary-tertiary transition
and the maths anxiety-performance link, and some deeper discussion on some
of the particularly relevant related concepts.

• One of the major contributions of this thesis is the detailed curriculum mapping
which is the focus on Chapter 4. In this curriculum mapping the content of the
top two levels of senior high school mathematics in the Australian Curriculum
(AC) and South Australian Certi�cate of Education (SACE) are mapped to each
other and to the content currently in MathsStart and MathsTrack. Detailed
discussion of this mapping also includes commentary on how the content relates
to typical entry-level university mathematics courses, as this is particularly
relevant for bridging course students.

• Finally, in Chapter 5 the conclusions from this work are summarised, and in
particular the interactions between the di�erent avenues of research are consol-
idated. Additional work done outside of this thesis is discussed, and potential
future research directions are outlined.
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1.1 Context

1.1.1 Bridging Courses in General

Students will usually enrol in university mathematics bridging courses because they
are required to demonstrate a certain level of mathematical knowledge/ competence
before commencing study at university, but either do not meet those requirements,
or do but feel a lack of con�dence in their abilities and feel like they need to refresh/
revise/ learn some mathematics prior to commencing their studies.

Reasons why these students do not either meet the entry requirements, or feel a
lack of con�dence in their abilities can be quite varied:

• A long period of time may have passed since they last studied mathematics (or
studied at all). The number and proportion of so-called �adult learners� has
been steadily increasing for well over three decades now (Johnson & O'Kee�e,
2016; Hardin, 2008; Murtaugh, Burns, & Schuster, 1999).

• They may have performed poorly in mathematics in high school.

• They may have chosen not to study mathematics at a higher level in high
school.

• They may su�er from maths anxiety (which would make them likely to �t into
the above two categories as well).

The role of mathematics bridging courses is to take these students, and:

• Bridge their content knowledge so they are prepared for entry level university
courses, or other tertiary programs required/ assumed knowledge.

• Support the growth of their con�dence and self-e�cacy surrounding mathe-
matics.

• Ultimately prepare them to be successful in their continued tertiary study.

The question �what content should be taught in a university bridging course?� has
dramatically di�erent answers depending on the perspective one takes on what the
role of such a bridging course is. Even restricting the question to purely knowledge-
based content (excluding critical a�ective aspects such as self-e�cacy):

• If you take the perspective that the role of such a course is to �ll in the
gaps in student's knowledge left from an incomplete or maths-light high school
education, then the content that should be taught would include the �nal year
of high school curriculum. This approach can be particularly appropriate if you
do not know the direction of the students, or if they are potentially planning
on continuing study at an interstate university, for example.

• If you take the perspective that the role of such a course is to prepare students
for the further study they plan on engaging in however, this is quite di�er-
ent. The content relevant to any one student will be dramatically di�erent
depending on their planned direction. The senior high school mathematics
curriculum is quite general and would certainly contain many topics that would
be completely irrelevant to any particular student.
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In terms of choosing what content to teach in a university bridging course, the above
two competing perspectives will often create tension between each other. There are
advantages, disadvantages, and important stakeholders of both perspectives and this
unfortunately means that this tension cannot be resolved, but rather that it must be
balanced � a compromise found.

As though that wasn't di�cult enough, the question of �what content should be
taught in a university bridging course?� is only one part of the issue. As mentioned
above, a�ective aspects such as self-e�cacy are crucially important, and it has been
shown that, particularly in maths-heavy subject areas such as Science, Technology,
Engineering and Mathematics (STEM) signi�cant numbers of students drop out
within the �rst two years (House, 2000; Tsui, 2007), and that engagement with
mathematics support services such as the MLC drop-in centre and bridging courses
is an approach proven to be e�ective in addressing this issue (Lee, Harrison, Pell, &
Robinson, 2008). Consideration of impacts on these a�ective aspects of perspectives
of mathematics is critical for preparing students to be successful. Content cannot
be considered in isolation of these factors, and vice versa, they are fundamentally
entwined such that both must be considered in order to achieve the desired outcomes.

1.1.2 The Maths Learning Centre

The MLC in it's current form is part of the �Student Engagement and Success team�
within the �Division of the Deputy Vice-Chancellor & Vice-President (Academic)� of
the UofA, but it has been through many iterations since it's initial opening in 1992
with the incredible support of Liz Cousins and Alison Wol�. Geo� Coates was the
heart and soul of the MLC for many years, notably hosting the Australasian Bridging
Mathematics Network conference in 1996. From the mid 2000s to present, the MLC
has been in the capable hands of David Butler and Nicholas Crouch, who have helped
the MLC become what it is today. David Butler and Nicholas Crouch were awarded
a Commendation for Excellence in Support of the Student Experience by the UofA
in 2013, and a Citation for Outstanding Contribution to Student Learning frm the
2014 Australian Awards for University Teaching, O�ce for Learning & Teaching.
They have consistently represented expertise and a commitment to mathematics
education, to the process of learning mathematics, learning to learn mathematics,
and learning to teach mathematics.

The primary service the MLC at the UofA provides is a drop-in centre where
students can come and get help learning maths. It �exists to help all students at the
UofA succeed in learning and using maths relating to their coursework�. However
in addition to running the drop-in centre, the MLC also o�ers mathematics bridging
courses.

1.1.3 MathsStart and MathsTrack

The UofA o�ers a mathematics bridging course through the MLC called MathsTrack,
which can be used as a prerequisite at the University of Adelaide in place of SACE
Stage 2 Mathematical Methods. MathsStart is another mathematics bridging course
that was previously also o�ered through the MLC at the UofA, covering various topics
from high school mathematics up to the end of Year 11 (SACE Stage 1 Mathematics).
Although MathsStart is no longer o�ered, the resources are still available for personal
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study/ revision, and is useful for the purposes of reconsidering the content taught in
MathsTrack as it gives a broader context for the content, and the required knowledge.

Student Cohort

According to the sta� at the maths learning centre, the vast majority of students
enrolling in their bridging courses are aiming to end up in one of three places:

• Studying a tertiary degree at The University of Adelaide (approximately 60�
70% of bridging courses at any one time),

• Studying a tertiary degree at James Cook University, or

• In the defence forces.

Only about a single student will not �t into any of the three categories above at any
one time, so thinking of this as being the complete cohort of students is fairly close
to being accurate. The distribution within these categories can also be broken down
and the most common trends considered:

• Of the students aiming to enrol in a tertiary degree at the University of Ade-
laide, about 50% are aiming to study something in the Faculty of Engineering,
Computer and Mathematical Sciences (ECMS) (i.e. Engineering, Mathemat-
ics, Computer Science, etc.), and about 10% are aiming to study something in
the sciences, often veterinary science or oral health.

• Of the students aiming to enrol at James Cook University, most are aiming to
enrol in medical degrees, with some interested in marine biology or veterinary
science � broadly biological science in large.

• Of the students aiming to enlist in the defence forces, the majority of those
enrolled in the bridging courses are doing so to meet their pre-requisite math-
ematics knowledge criteria for air force pilot training.

The diversity of goals amongst the student cohort of the bridging courses makes
it challenging to tailor the content of the bridging courses to the students particular
needs without substantial resources unavailable to the MLC at this time. With this in
mind, the focus of the curriculum mapping presented in Chapter 4 will be on aligning
the content of the bridging courses to the senior high school mathematics curriculum,
as this is an achievable goal. That said, being aware of this diversity and taking it
into account when making decisions and structuring the content is still critical, and
will be revisited in Chapter 5.

Assessment

The assessment in the bridging courses is self-paced, meaning that students access
the resources themselves when they are ready, there are no classes or timetables,
students can start at any time and can take as long as they need. This should
not be understated, as it's impact on reducing test-anxiety and making mathematics
education more accessible to people to whom it might otherwise feel inaccessible is
absolutely crucial.
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1.2 The Curriculum-Assessment Framework

When considering improvements to the bridging courses, one of the key factors is
curriculum � content. The content of the courses is one of the things that can be
most readily modi�ed, and naively one might think that in this way, improvements to
the course could be easily implemented. However, as discussed by (Mohandas, Wei,
& Keeves, 2003) and will be explored in much more depth in Chapter 3, content
does not live alone, and cannot be considered independently of the broader environ-
ment. Speci�cally, there are bidirectional relationships between curriculum (content),
learning experiences (the experiences students have while learning), and evaluation
(an umbrella term containing several meaningfully di�erent concepts that will be dis-
cussed below), as shown in the curriculum triangle of Tyler (1949) in Figure 1.1. To
give some simpli�ed examples:

• A test is informed by the content as it must not contain content not taught in
the course, and might aim to cover all of (or most of) the content taught in
the course. But the results of the test, or even the fact that there is a test at
all, can (and should) also in�uence decisions about what content to include in
the course in the �rst place.

• The learning experiences that students have depends on the content, obviously.
But in the other direction, student's experiences should also inform decisions
about curriculum.

• If students struggle with a speci�c concept in a test, perhaps the learning
experiences they have surrounding that concept should be re-examined. On the
other hand, if the learning experiences students have surrounding a particular
concept are framed in a particular way, then the way those concepts are tested
should take that into account.

Figure 1.1: The curriculum triangle of Tyler (1949) as visualised in Figure 1 of
Mohandas et al. (2003)

Although each of these areas can be considered individually to some degree,
it is important that when decisions are made that the bigger picture with all the
interactions is taken into account. Mohandas et al. (2003) also make the good
point that Evaluation needs to be thought of more granularly, as di�erent forms of
evaluation serve very di�erent purposes, and very di�erent roles in both the learning
and teaching processes. They expand the curriculum triangle to the �curriculum-
evaluation diamond� shown in Figure 1.2, which is of course no diamond at all, but
rather an triangular bi-pyramid with its axis of 2π

3
rotation symmetry representing

the fully connected graph of 5 nodes. Mathematical pedantry aside, Mohandas et
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al. (2003) make the important point that two critical changes should be made to the
curriculum triangle model:

• (Student) assessment should be distinguished from evaluation and account-
ability (Mohandas et al. (2003) also present de�nitions for each of these terms
in order to help distinguish them, of which a concise summary will be included
below).

• Standards of performance and how they interact with the other elements play
an important role.

Figure 1.2: The curriculum-assessment diamond as shown in Figure 2 of Mohandas
et al. (2003)

The de�nitions of the terms �assessment�, �evaluation�, and �accountability� ac-
cording to Mohandas et al. (2003) and hence as used in Figure 1.2 are useful in order
to distinguish between these concepts, and very concisely can be summarised as:

• Assessment usually refers to individual students, and it's goal is generally to
understand what/ how much learning has occurred. It can be performed by
educators, or importantly by students themselves, and it can be formal (tests,
exams, assignments) or informal (discussion, practice questions, etc.)

• Evaluation usually refers to some a decision making process: A university eval-
uates a student to decide if they should be allowed to enrol in a particular
degree, for example.

• Accountability usually refers to a responsibility held by an educator or organi-
sation, and is often associated to reporting to some stakeholders.

All three of these terms are important but serve very di�erent roles in the context of
improving the bridging courses. Assessment is the most important, and in particular
student self-assessment as will be discussed in more detail in Chapter 3, but also
in terms of the self-pacing of the assignments in the bridging courses, which act as
all three: assessment (because of the feedback cycle used to help students through
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the assignments, they are initially used to assess the learning that has occurred and
use this information to inform students about how to proceed through feedback),
evaluation because the assignments are used to gate students from completion of the
courses, and accountability to ensure students are at the required level of knowledge
and satisfy the responsibility of ensuring they are adequately prepared for their future
studies.

There are two key concepts in which the standards of performance are important.
First, because it is important to establish standards based assessment in which stu-
dents are assessed against �xed standards and not against each other (this is widely
accepted in the education literature). Secondly, these �xed standards should be set
with clear objectives in mind. It is in this sense that the standards of performance are
quite complicated to nail down in the context of the bridging courses. Typically at
a university level, standards of performance will be determined by things such as in-
dustry standards (for example studying an engineering degree, the industry standards
for engineers will apply). Ultimately, the skills and knowledge required of students
completing a degree will be determined by the skills and knowledge that the industry
hiring those students needs graduates to have. However, with the students in the
bridging courses going in so many di�erent directions this is di�cult to determine.
In Chapter 4 we discuss some of the most common �rst year subjects students aim
to enrol in (which are common to many di�erent degrees), but ultimately as the
bridging courses usually �t into the secondary-tertiary transition, i.e. the evaluation
of students for university entry, the primary basis for the standards of performance is
the senior high school curriculum, which is discussed in detail in Chapter 4.

This thesis can be thought of as consisting of two broad avenues of research, fo-
cusing on di�erent parts of the curriculum-assessment `diamond' shown in Figure 1.2:

• Chapter 4 explores the curriculum and standards of performance part of the
`diamond' by mapping the national and state curricula to the current curricu-
lum of the bridging courses, while discussing the various relevant standards of
performance to contextualise the advantages and disadvantages of including or
excluding particular sections of these curricula.

• Chapter 3 explores the existing literature in order to make recommendations
around what learning experiences and assessment methodologies are needed in
order to facilitate the learning prescribed my the curriculum discussion.

Naturally, and as supported by the `diamond' framework of Mohandas et al. (2003),
neither of these two approaches to improvement of the bridging courses would be
successful in isolation, but rather by taking into account both in unison real improve-
ments could be achieved.
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Chapter 2

Methodology

This chapter describes the methodology employed in this work. There are two main
bodies of work in this thesis, which have separate methodologies:

• A literature review, presented in Chapter 3, and

• A curriculum mapping, presented in Chapter 4.

2.1 Literature Review

The initial phase of the literature review was performed in an iterative process which
given a list of sources (primarily academic papers) involved reading the list of sources
and generating a new list repeatedly. In the �rst iteration, some of the most relevant
papers identi�ed included some Australian research from the University of Sydney
(Nicholas & Rylands, 2015; Gordon & Nicholas, 2013b), and some international
work (Johnson & O'Kee�e, 2016). The iterative process then involved reading the
current list of sources, taking notes and quotations for later use, and compiling a
new list of sources by:

• Noting relevant references used in the current list,

• Papers referencing these papers (using �cited by� functionality of search en-
gines),

• Additional papers identi�ed by use of search engines for newly identi�ed key
terms, such as �adult-education�, �maths anxiety�, etc.

Some of the particularly relevant papers which came up in the second and third
iterations of this process included the works of Galligan and Taylor (2008) ,Irwin,
Baker, and Carter (2018), and Ramirez, Shaw, and Maloney (2018). This iterative
process was performed until the same papers kept coming up more and more fre-
quently, which only took approximately four or �ve iterations. Then, the notes and
quotations made while reading these references where reviewed, and synthesised into
a coherent discussion, something akin to a �systematic review�, although the indi-
vidual keywords and search phrases are not explicitly reported, all statements made
are traceable (accurately cited). It is important to acknowledge the inherent bias
involved in this (and any) literature review methodology. One of the future research
directions for this work would be to further expand the literature review to be more
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comprehensive and less biased in a more systematic way, but the intention of this
work was not to provide a comprehensive systematic review, rather a starting point
for one to begin from. This starting point is presented in Chapter 3.

2.2 Curriculum Mapping

The curriculum mapping was performed by �rst establishing the levels of detail of
interest, and terminology for these levels of detail. Speci�cally, there are two levels
of detail at which the curriculum mapping is performed: the topic level, and the key
concept level. It is important to note that within the context of this work the terms
�topic� and �key concept� are reserved to hold the very precise meaning referring
to these two levels of detail. These levels of detail are discussed in more detail in
Chapter 4, but very brie�y each curriculum is broken up into approximately 12�24
topics, with each of these topics including typically 6-12 key concepts each.

The �rst phase of the curriculum mapping methodology was to summarise the
key concepts in a concise way such that in the later phases this summary could
be used to guide alignment between curricula. This essentially boils down to the
generation of the table presented in Appendix A. This was essentially a �document
analysis�, and involved carefully reading the documents associated to each curriculum,
and summarising the key concepts in each topic therein. There are three curricula
analysed in this way, and the details of how this phase was performed for each follow:

• For the AC, the curriculum is presented on their website, and both Senior
Mathematical Methods and Senior Specialist Mathematics where considered
(accessed between February and May 2019). Each of these subjects is broken
down into 4 units, and each unit has three components: a description, learning
outcomes, and content descriptions. The content descriptions section for each
unit is split into three topics, each of these topics corresponds to a topic in
our level of detail terminology. The material under these topics in the content
descriptions section of each unit was the focus for this curriculum mapping,
and this is the material that was read carefully and summarised to generate
the key concept list in Appendix A.

• For SACE, the Subject Outline (for teaching in 2019) document was retrieved
from the SACE website for each of the three relevant subjects: Stage 1 Math-
ematics, Stage 2 Mathematical Methods, and Stage 2 Specialist Mathematics.
In each of these documents, the �LEARNING SCOPE AND REQUIREMENTS�
section contains a summary of the curriculum by topic, and each of these top-
ics correspond to a topic in our level of detail terminology. Within each topic,
SACE often has subtopics, but we do not consider this level of detail in this
curriculum mapping, instead treating each entire topic as a whole. Within
each topic, the left-hand column �Key questions and key concepts� was read
carefully and summarised to generate the key concept list in Appendix A. As
discussed in Chapter 4, the focus of this curriculum mapping is primarily on
the content itself, rather than the surrounding concepts involved in how the
content is taught (which is more what the right-hand column, �Considerations
for developing teaching and learning strategies� is for).

• For the bridging courses, the content is available on their website in the form
of a number of booklets for each of the courses: MathsStart and MathsTrack.
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Each of these booklets will constitute a topic in our level of detail terminology,
and these entire booklets where carefully read and summarised to generate the
key concept list in Appendix A.

Once the �rst draft of the key concept summary presented in Appendix A was
completed, two mappings where produced: one at the topic level, and one at the
key-concept level. The topic level mapping, shown in Figure 4.1, was produced by
comparing the broad concepts covered in the topics, with little concern for the details
involved with particular alignment of key concepts. For example an �introductory
calculus� topic would be mapped to another �introductory calculus� topic, even if
a speci�c concept such as anti-derivatives is introduced in one but not the other.
The purpose of this mapping is to provide a high-level view of the mapping between
the curricula in order to help structure the more detailed discussion of key concept
alignment. The key concept alignment was then performed by going topic by topic,
and aligning every single key concept listed in Appendix A, then in any mismatching
cases, referring back to the original curriculum document to check for mistakes and
validate any conclusions made. This mapping is obviously too complex to be able
to meaningfully represent it graphically, and so instead the conclusions thereof are
presented in the form of discussion in Chapter 4. No major mistakes where discovered
in this process, but some small modi�cations where made to Appendix A all of which
had to do simply with harmonising terminology used. For example, �slope of a line�
versus �gradient of a line�, etc. This key concept level mapping was also used to
make adjustments to the topic level mapping shown in Figure 4.1. No major changes
where made, but single key-concept links where added as dashed lines as a result of
the key concept mapping.

Although it was not part of the initial intent, it became apparent in the process of
completing the mappings described above that particularly due to the very di�erent
structure of the curricula it would be useful to add another level of detail in which
topics where grouped under broad content areas, and to reproduce another version
of Figure 4.1 in which the topics where rearranged into these broad content areas
as shown in Figure 4.2. This content area level of detail was then also used to help
structure the key concept level discussion in Chapter 4.
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Chapter 3

Literature Review

3.1 Introduction

In this chapter the literature surrounding mathematics bridging courses is explored
both in an Australian context as well as internationally. The literature reviewed also
extends into some directly relevant areas such as general perceptions of mathematics,
the secondary-tertiary transition more broadly than just in the context of mathematics
education, relevant frameworks that have been proposed, and some of the key areas
that prevent students from being successful such as maths anxiety.

Remembering the purpose statement of this thesis, and the clarifying secondary
questions that it raises, it is interesting to note that these questions are by no means
new questions, although they do not necessarily have any consensus on how to answer
them. In particular, Poladian and Nicholas (2013) o�er an insightful discussion of
two key (unanswered) questions within bridging mathematics posed by Galligan and
Taylor (2008):

• How is success de�ned in bridging mathematics activities?

• Are successful bridging mathematics students successful university students?

which Poladian and Nicholas (2013) address with the following comments:

• �there are inherent di�culties in de�ning and measuring success in bridging
courses. Godden and Pegg (1993) suggest that formal evaluation of bridging
mathematics programs may be contrary to the aims of the programs, and
undermine their major strengths of �exibility and student-centred approach.
They argue that traditional evaluative techniques are `just not possible' and
`risk losing the essence of the support and assistance so necessary for these
students'. �

• �internationally, bridging mathematics programs have been shown to be highly
e�ective at resolving skill de�ciencies for some students (Kajander & Lovric,
2005; Bahr, 2008). In a large US study, (Bahr, 2008, p.442) found that
`remediation has the capacity to fully resolve the academic disadvantage of
math skill de�ciency' for the quarter of students who `remediated successfully',
but the likelihood of successful remediation declined sharply as the `depth of
remedial need' increased. The latter �nding echoes (Wood, 2001)'s remark
that bridging programs do not work for very mathematically weak students.�

respectively.
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3.2 �The Mathematics Problem�

�The mathematics problem� is a term originally coined by Howson et al. (1995)
but that has continued to be relevant to the present day, receiving even greater
attention and research in recent times. It refers to the trend of declining interest
and participation of �nal year high school students in mathematics. It also refers
to the carry-over e�ects this has on the success of students in tertiary education
(both in mathematics, but also notably in other areas). �The mathematics problem�
is a term now used also to describe the downstream impacts these trends have on
the economy: modern industries are dominated by a need for mathematically skilled
graduates (engineering, science, technology, ...), but the importance of mathematics
in these �elds is often overlooked from the general populations perspective (King &
Cattlin, 2015; Gordon & Nicholas, 2013b).

Barrington and Evans (2016) shows that in Australia, although the number of
both advanced and intermediate mathematics year 12 students was increasing over
the ten years from 2006 to 2015 (as the overall population of total year 12 students
increased), the percentage participation in these subjects steadily declined. James
(2019) updates the �gures of Barrington and Evans (2016) with data up to 2017,
showing a continuation of the same steady trend. These reports also highlight the sig-
ni�cant gender gap that exists in mathematics participation in �nal year high school
students. The gender gap is more dramatic in advanced level mathematics than in
the intermediate level, with 37.8% of advanced mathematics year 12 students iden-
tifying as female, especially when considering that 51.8% of year 12 students of that
year where female. 2017 saw a signi�cant jump in intermediate level mathematics
participation by female students, with there being more female students than males
for the �rst time in recorded history (James, 2019). The gender gap in mathematics
education is a signi�cant issue that needs to be taken into account when considering
university mathematics entry, particularly as the gap is most pronounced in the ad-
vanced level subjects which are targeted at university entry. It is an issue recognised
by the Australian Mathematical Sciences Institute (AMSI), who have committed sig-
ni�cant resources towards programs intended to address this inequity over the past
two decades in particular. Perhaps the up tick in female student participation in
intermediate level mathematics in 2017 could be partly attributed to some of these
programs, such as the CHOOSEMATHS project. Brown (2009) gives a shocking
wider-view picture of this overall trend, speci�cally that the proportion of year 12
students studying intermediate or advanced level mathematics has declined by 22%
and 27% respectively from 1995 to 2007.

Amongst other reasons, this decline in participation in mathematics is a problem
in Australia because mathematical skills are essential to just about all the key future
industries (Croft, Harrison, & Robinson, 2009), and hence the Australian economy.
The key economic importance of mathematics is widely acknowledged amongst the
academy and industry, but it's importance is often overlooked and di�cult to com-
municate to the wider community because of it's indirect importance through what
are perceived to be other �elds: engineering, science, etc. all of which require a deep
level of mathematical skills, but aren't associated to mathematics in the general pop-
ulations view. Thomas, Muchatuta, and Wood (2009) argues that one of the most
in�uential factors in the declining participation in mathematics is the �community's
perception that mathematics is not useful in the marketplace�. Gordon and Nicholas
(2013b) go on to emphasise the carry-on e�ects of negative community perceptions
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of mathematics leading to high school students choosing not to participate in higher-
level mathematics impacting on not only their success in university, but on whether
they continue to study mathematics at all. This obviously has implications for math-
ematics bridging courses at universities � students who previously had de-prioritised
their own mathematics education in favour of pursuing these other �elds, notably
engineering for example, will often turn to bridging courses when they realise the
importance of mathematics in being successful in the �eld of their interest.

Observation, concern surrounding, and research of this decline in mathemat-
ics participation in senior high schools are not limited to Australia (Hourigan &
O'Donoghue, 2007; Hoyles, Newman, & Noss, 2001). Hoyles et al. (2001), as well
as Luk (2005) further connect this trend to another: the apparent divergence of con-
tent (curriculum) between senior secondary and tertiary education. This divergence
of curriculum is a point that will be explored extensively in Chapter 4. In a landmark
study, Kajander and Lovric (2005) identi�ed a gap between secondary and tertiary
mathematics education in Canada. In the United Kingdom Tariq (2002) noted a
decline in numeracy skills among �rst-year bioscience students. This trend is neither
limited to Australia, nor new. Universities around the world have recognised this
continuing problem for some time, but opinions on how to address it vary. Robinson
(2003) suggested that the standard for high school mathematics should be raised,
but even if there where consensus amongst the academy that this was appropriate
(which there is not), this is beyond the power of universities to control (although, the
setting of pre-requisites is a topic that will be explored in more detail below). Within
the power of universities to implement are solutions such as to introduce �remedial
mathematics� into �rst-year teaching programmes as highlighted by Kitchen (1999).
More recently, as Moses et al. (2011) suggest, universities have been increasing their
reliance on �advanced and targeted preparatory programmes� � i.e. bridging courses.
As an example of this from outside Australia, Faulkner, Hannigan, and Gill (2010)
note that at the University of Limerick in Ireland

�there has been a 20�25% reduction in students attending their �rst
service mathematics lecture, a 12�16% reduction in the number of stu-
dents entering service mathematics modules with higher level mathemat-
ics and an 8�12% increase in the number of non-standard students. Such
changes place additional pressure on support services like MLCs whose
primary function is to provide the necessary and appropriate support to
all university students.� (Johnson & O'Kee�e, 2016)

3.3 The Secondary-Tertiary Education Transition

A key step we are interested in from the perspective of bridging courses is univer-
sity entry, or more broadly: the transition from secondary to tertiary education. It
may seem obvious that students engagement and performance in mathematics in
secondary education is a strong predictor of their success in tertiary mathematics
education, but the exact relationship has some important subtleties. Speci�cally, it
has been shown that the level of mathematics completed in high school (advanced,
intermediate, etc.) is substantially worse at predicting success in tertiary mathemat-
ics education than when combined with the level of achievement in secondary school
(Kajander & Lovric, 2005; Nicholas, Poladian, Mack, & Wilson, 2015). Students
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having completed a lower level of mathematics in secondary school to a higher de-
gree of achievement can in some cases have a higher chance of success in tertiary
education than students who completed a higher level of mathematics in secondary
school but to a lower level of achievement. Although this might seem intuitive, it is
not entirely obvious when looking at it in terms of content � curriculum � alone.
It should not be understated that although it has been shown quite clearly that the
e�ect of bridging courses is smaller than the e�ect of high school engagement in
mathematics education, that bridging courses have been shown to have a substantial
e�ect nonetheless, and even more importantly have been shown to �ll a critical gap
in addressing student needs (MacGillivray, 2009). This is important to acknowledge,
and will come into the discussion surrounding university entry requirements below,
but engaging students in mathematics in secondary school is beyond the scope of this
work, although it is clearly a very important aspect of �the mathematics problem�.
For now, we consider that one of the roles of bridging courses is to make tertiary
mathematics education accessible to all students, including those that where disen-
gaged with mathematics in high school and therefore are in particularly high risk in
tertiary education.

Rite of Passage Model

Very little has been done in terms of developing educational frameworks for under-
standing the secondary-tertiary transition more systematically, but Clark and Lovric
(2008) suggest using the pre-existing and well-understood literature surrounding the
concept of a `rite of passage' from anthropology and culture studied (relating con-
cepts such as culture shock) to help structure our thinking about about the di�culties
and evaluating strategies to address di�culties with the secondary-tertiary transition.
Clark and Lovric (2008) propose using the seminal work of Arnold van Gennep and
thinking about a �life crisis� event as consisting of three phrases: separation, liminal,
and incorporation. One of key and important implications this perspective has is that
this transition does not only involve di�culty for the individuals (students), but the
broader community (their family, teachers, etc.). The wider communities negative
perceptions of mathematics are widely acknowledged to have a substantial e�ect on
students attitudes, and hence success (King & Cattlin, 2015; Gordon & Nicholas,
2013b), and it is important to take this into account. One of the immediate con-
sequences the �rite-of-passage� model implies is that �It is normal to feel discomfort
during a rite of passage but much easier to deal with if this is expected.� (Clark
& Lovric, 2008). This is a key take-away: setting clear expectations is critical for
students to be able to cope with the di�culty of this transition, they need to know
that it will be di�cult, so they can expect that di�culty and come into it prepared.

None-the-less, the �rite-of-passage� model of Clark and Lovric (2008) aligns
well with the broader literature and research surrounding bridging courses and the
secondary-tertiary education transition. Speci�cally, the concept of being socially
isolated and needing to adapt to a new environment with di�erent expectations
and social norms is re�ected widely in the academic writing. Gordon and Nicholas
(2013b) discuses how one of the key valuable experiences students got out of the
bridging courses at the University of Sydney was the interactions with peers and
teachers. This experience is supported by literature discussing the importance of so-
cial and interactive learning as a formative element of early university experience that
is highly predictive of retention (Peat, Dalziel, & Grant, 2001; Trotter & Roberts,
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2006) particularly for students whose family or friends are for example from a �work-
ing class� background (Leese, 2010), or from a cultural background less familiar with
the social norms and expectations associated with university education. In particular,
self-motivation and independent learning are expectations that consistently come up
as being shock factors for students transitioning from secondary to tertiary education
(Murtagh, 2010).

Assumed Knowledge and Conditions of Entry

Contributing to the problem of expectations not being set explicitly, in recent years
Australia universities have been moving away from prerequisites for entry towards a
�assumed knowledge� approach. What this means is that instead of requiring students
to have completed certain subjects in high school in order to allow them to enrol in a
course at university, they instead put the content from those subjects under �assumed
knowledge�, allow students to enrol in the subject even if they have not completed
the high school subject, and put the onus for having that knowledge on the students.
That is how the universities see it, anyway. How the students see it is quite di�erent,
as demonstrated by the work of Gordon and Nicholas (2015), who show substantial
variance in student perceptions of � `assumed knowledge' ranging from perceiving it as
vague and pointless `stu�' to a cohesive body of foundational knowledge for tertiary
study�. One of the consequences of this is the increasing under-preparedness of �rst
year undergraduate students.

The issue of entry requirements into university and prerequisites being moved into
�assumed knowledge� is an even more complex issue than it might at �rst appear.
Varsavsky (2010) discuss how in Australia the way university entry is managed may
in fact be contributing to the problem of low participation in higher level senior
high school mathematics. Speci�cally, the absence of prerequisite subjects in many
universities means the only condition of entry to university is the achievement of a
su�ciently high �tertiary entrance rank�, a score calculated based on achievement
in all �nal high school year subjects, with some adjustments for the combination of
di�culties of the subjects. A substantial amount of e�ort is gone too by �nal year
high school students, teachers, and counsellors to optimise students performance on
this tertiary entrance rank through very careful choice of which subjects to take in
their �nal year of high school. Often this will result in creating a tension between
achieving a high tertiary entrance rank and hence being accepted into university, and
having the required knowledge to be successful in university because the subjects
chosen are not those containing the content relevant to the degree the student is
enrolling in (Gordon & Nicholas, 2013a; Poladian & Nicholas, 2013). This is of
course an issue that generalises far beyond mathematics, but to every area of study.
Gordon and Nicholas (2013b) claim that: �the major reasons for students taking lower
levels of mathematics in senior year(s), or dropping mathematics, include �nding
enough time for non-mathematics subjects, con�dence in mathematical capability,
advice and maximising potential ranking for university admission�. Rylands and Coady
(2009) demonstrated that what a student studied in senior high school predicted
their performance at university, whole their tertiary entrance rank did not. The
result in the bridging course literature that although bridging courses can help, their
e�ect cannot compare with engagement in high school is a result that has been
reproduced many times in the literature across many countries (Kajander & Lovric,
2005; Nicholas et al., 2015; Tariq, 2002). This is likely, as suggested by Kajander
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and Lovric (2005), due to the time-period typically involved. A bridging course is
usually a short preparatory course covered in an interim before beginning tertiary
study, while high school engagement is a learning and teaching experience spanning
several years. Despite Australia's Chief Scientist recommending moving back to
pre-requisites (Chubb, Findlay, Du, Burmester, & Kusa, 2012), there is no sign of
this being on the table: the commercial aspect of universities demands increased
enrolment of students, and that means relaxing entry conditions.

3.4 Maths Anxiety

Why is Maths Anxiety Important?

In 2012 Programme for International Student Assessment (PISA) reported that across
Organisation for Economic Co-operation and Development (OECD) countries, 60%
of students �worry about getting poor grades in mathematics� (OECD, 2013), and
over 30% of 15 year old students �get very nervous doing mathematics problems�.
This impacts on students' academic performance, but at a more fundamental level
also impacts on their subject choice in the �rst place. This has been recognised widely
as being an ongoing issue for many decades, with literature discussing maths anxiety
dating back as far as the 1950's (Dreger & Aiken Jr, 1957). Maths anxiety is also a
community issue � parents and teachers also su�er from maths anxiety and hence
both normalise the behaviour for students and actively create a new generation of
maths-anxious people. As though the problem was not already severe enough, recent
research has shown that students with a high level of maths anxiety often experience
the anticipation of a maths task literally as visceral pain (Lyons & Beilock, 2012).
Maths anxiety is a serious well-being issue, beyond being simply an academic and
economic issue.

Beyond well-being however the maths anxiety-performance connection has also
been robustly and repeatedly demonstrated, this this connection is particularly rele-
vant when considering students coming into bridging courses. Students enrolling in
bridging courses are more likely to have performed poorly in high school and given the
prevalence of maths anxiety and the strength of the maths anxiety-performance link,
are more likely to su�er from maths anxiety. This inference is supported by the survey
studies of bridging course students by Nicholas, Gordon and Polodian. One example
of this is highlighted by Foley et al. (2017) who juxtaposes the internationally rising
demand for STEM professionals with the negative correlation between maths anxi-
ety and performance shown in the 2012 PISA report (OECD, 2013) to highlight the
relevance of addressing maths anxiety in �lling this demand, aligning with `the math-
ematics problem� discussed earlier in this chapter. The relationship between maths
anxiety and maths-quali�ed professionals in the workforce is supported throughout
the literature: when a student has low self-concept (correlated with high maths anx-
iety), they will tend not to enrol in maths beyond the minimum requirements for
graduation (Ashcraft, Krause, & Hopko, 2007), and students a�ect towards maths
can predict their university major (LeFevre, Kulak, & Heymans, 1992). Beyond this
example, the list of stakeholders in a students academic success in maths goes on
and on: parents; the student's themselves; schools (which are often funded based on
the results of standardised testing such as National Assessment Program � Liter-
acy and Numeracy (NAPLAN)), and teachers amongst them. From the perspective
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of bridging courses, this link is important because A) it motivates supporting these
maths anxious students to pursue a tertiary mathematics educations, but also B)
because industry is an important stakeholder in tertiary education, including bridging
courses.

Maths Anxiety as Distinct from General Anxiety

The existence of maths anxiety as �emotional disturbances in the presence of math-
ematics� has been noted as early as the 1950's, Dreger and Aiken Jr (1957) even
postulated that what he tentatively designated �Number Anxiety� and later became to
be known as Maths Anxiety could be a distinct syndrome from general anxiety. Later
the landmark meta-study of Hembree (1990) supported this hypothesis, showing a
correlation of only 0.38 between maths anxiety and general anxiety. In more recent
times, this hypothesis has also been con�rmed by Young, Wu, and Menon (2012)
using functional magnetic resonance imaging (fMRI) to show that the brain activity
in a person experiencing maths anxiety is measurably distinct from that in a person
su�ering general anxiety. These later studies, as well as the the work of Kazelskis
et al. (2000) and more, have also delineated maths anxiety from test anxiety, and
these di�erent anxieties existing as meaningfully distinct constructs is now quite well
accepted. For more on the history of maths anxiety, Suárez-Pellicioni, Núñez-Peña,
and Colomé (2016) o�ers a more detailed review.

Frameworks for Understanding Maths Anxiety

.
Very little research has been conducted on maths anxiety in isolation, although

some of the research that has shows some interesting results (Young et al., 2012;
Lyons & Beilock, 2012). Instead, the bulk of the literature is investigates the maths
anxiety-performance connection. Speci�cally, there are two popular theories being
pursued and I will use the terminology of Ramirez et al. (2018) to describe them:
the �Disruption Account� and the �Reduced Competency Account�. Ramirez et al.
(2018) make a convincing argument that although it might seem at initial glance that
these two theories contradict one another, they are not actually mutually exclusive
and in actual fact are compatible with each other. Ramirez et al. (2018) suggests a
third �Interpretation Account� which encapsulates observations made by both lines
of research into a single framework, see Figure 3.1.

First, a brief summary of the two popular existing theories. The �Disruption
Account�, spearheaded by the work of Ashcraft et al., is focused on the concept of
working memory (Ashcraft & Kirk, 2001; Ashcraft & Krause, 2007). Speci�cally,
Ashcraft et al. claim that anxiety takes up working memory capacity in a student's
mind, which prevents them from using that working memory to complete maths tasks
and in that way impacts on their performance in said tasks. In seeming contrast,
the �Reduced Competency Account� proposes the opposite causality: that low maths
ability leads to poor performance and a�ectively negative experiences of maths, which
leads to an association between maths and negative a�ect to be formed in a students
mind, i.e. causing maths anxiety to develop. There is a substantial body of work
to support this hypothesis, including the landmark meta-analysis of Hembree (1990)
and the longitudinal study of Ma and Xu (2004) which found that although past
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Maths Anxiety

Maths Performance

Disruption Account Reduced Competancy Account

Figure 3.1: The Interpretation Account of Ramirez et al. (2018) for the maths
anxiety-performance link showing how the Disruption Account and the Reduced Com-
petency Account can be compatible.

maths anxiety was correlated with future maths performance it was a small e�ect,
while past maths performance had a strong e�ect on future maths anxiety.

Complexities in Finding E�ective Interventions

The models for the causation structure in the maths anxiety-performance connec-
tion presented above are of course broad oversimpli�cations of what is an incredibly
complex and interconnected topic. They do however imply very di�erent approaches
for intervention. The �Reduced Competency Account� suggests interventions that
boost maths performance and hence allow students to experience success in maths
should also help to reduce maths anxiety. The results of Supekar, Iuculano, Chen,
and Menon (2015) seem to support this hypothesis as when students are given an
intensive 8-week tutoring program to boost their maths skills, this is associated to a
reduction in maths anxiety. The earlier work by Faust (1996) further supports via an
anxiety-complexity e�ect in which low and high maths anxiety groups performed sim-
ilarly on low complexity problems, but in high complexity problems the high anxiety
groups performance was impacted. However, Jansen et al. (2013) showed that it is
not necessarily as simple as these studies suggest � they showed that when students
experience success they attempt more problems and perform better but that when
the confounding factors are modelled accurately enough it can be shown that the
improved performance is almost completely predicted by the number of problems at-
tempted, not their experience of success. Furthermore, Jansen et al. (2013) showed
that the level of maths anxiety was not a�ected in a signi�cant way when experi-
ence of success was varied, which raises a lot of interesting but as yet unanswered
questions.

In contrast to the �Reduced Competency Account�, the �Disruption Account�
implies that maths anxiety itself should be the target of interventions, and that
if the maths anxiety is successfully reduced this will result in more free working
memory and hence boost student performance. Following this line of reasoning,
Park, Ramirez, and Beilock (2014) demonstrate a direct and successful attempt at
this type of intervention where they used expressive writing exercises to guide students
self-perceived narratives about their experiences with maths and reduce their maths
anxiety. Notably the approach of Park et al. (2014) is similar to successful approaches
to the treatment of clinical anxiety disorders (McNally, 2007; Becker, Darius, &
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Schaumberg, 2007; Foa et al., 2005). Another approach drawn from the clinical
psychology literature is that of reappraisal (Jamieson, Peters, Greenwood, & Altose,
2016). In this approach stress is re-conceptualised as a coping tool, a physiological
response the purpose of which is to improve physical and mental performance in
response to a challenge to be overcome. By reconceptualising stress in this productive
way, rather than as a symptom of exposure to something to be feared and avoided,
this approach does not necessarily aim to directly reduce stress and anxiety levels
in students, but instead allow them to perform despite the stress. This change in
the perspective of stress is also very much in line with other parts of the literature
discussing �productive struggle� (Wang et al., 2015), including some of the discussion
of the �Interpretation Account� by Ramirez et al. (2018).

Intrinsic motivation has been shown to have an important mediating role in the
relationship between Maths anxiety and performance (Wang et al., 2015), and serves
as a crucial link in the �productive struggle� mindset. This reconceptualisation to
a `productive struggle' model is not an isolated occurrence in the literature. Lin-
Siegler, Ahn, Chen, Fang, and Luna-Lucero (2016) tells stories about the struggles
experienced by famous scientists to students in an attempt to help normalise the
concept of productive struggle in the context of a science classroom. Hiebert and
Grouws (2007) similarly provide a discussion on the importance of the �productive
struggle� concept but speci�cally in a maths context.

One of the implications of the �Interpretation Account� proposed by Ramirez
et al. (2018)is that if an intervention targets only one causal direction in the cycle
of Figure 3.1, the cycle is likely to re-establish and negate any potential long-term
e�ects. However the research of such long-term e�ects is very limited, and several
authors have discussed the need for further research into this (Suárez-Pellicioni et
al., 2016; Chang & Beilock, 2016). None-the-less, the limited literature that does
exist discussing this seems to agree that the approach most likely to be successful
is one that targets both causal directions simultaneously, i.e. that focuses on both
improving maths performance and reducing maths anxiety, simultaneously. This is
very much in line with several of the other frameworks discussed in this work, not least
of ll the curriculum-assessment diamond of Figure 1.2 in which it is emphasised that
while content is important, it is only equally as important as the learning experience.
If students are not taught the required content they will not succeed, but if they are
taught the required content and their experience of learning it is �lled with anxiety
and stress, they will also not succeed. The path to achieving student success is clearly
one in which both aspects are considered.

3.5 Self-E�cacy

Much of the early research into self-e�cacy has been structured based on the �social
cognitive theory� of Bandura, so it seems appropriate to begin with a quote. Bandura
(1997, pg391) de�nes self-e�cacy as

�people's judgement of their capabilities to organize and execute courses
of action required to attain designated types of performance�

The connection between student's mathematical self-e�cacy and their success in
university preparatory mathematics courses has been well established in the literature
(Burton, 1987; Klinger, 2006, 2011).
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To quote Johnson and O'Kee�e (2016):

�Self-e�cacy is vital among all students but particularly among adult
learners as an individual's beliefs of self-capability has been shown to
a�ect motivation, performance, achievement, e�ort, willingness to persist
with a task, as well as the anxiety they experience (Bandura, 1997;
Pajares & Miller, 1994; Pajares, 1996; Pajares & Miller, 1997; Pajares &
Graham, 1999). Woodley (1987) (cited in (McGivney, 1996)) noted that
the main personal factors that contribute to dropout are: self-perception,
being disorganised, not having su�cient study skills and lacking in self-
con�dence. This suggests that an individual's self-e�cacy plays a role in
their decision with regard to dropping out.

(Hackett & Betz, 1989) and (Pajares & Miller, 1994) and Pajares and
Miller (1995) also found that self-e�cacy can have an impact on career
choice. In these studies, it was found that mathematical self-e�cacy
is a stronger predictor of students' mathematical interest and choice of
degree programmes than either prior mathematical achievement or math-
ematical outcome expectations. Self-e�cacy also in�uences how often
mathematics is used, as well as an individual's willingness to pursue ad-
vanced work in mathematics, and even the choice of prospective occu-
pations (Dutton and Dutton 1991). Engineers Ireland (2010) highlight
that this avoidance of mathematics, and mathematics-related courses,
at university will eventually prove detrimental when attempting to build
a knowledge economy. This point was also stressed decades before by
(Hembree, 1990, pg34) when he stated that `when otherwise capable stu-
dents avoid the study of mathematics, their options regarding careers are
reduced, eroding the country's resource base in science and technology'.�

It is also well established that mathematical self-e�cacy is strongly correlated
to a combination of current knowledge/skills and current performance, with females
and those who have not studied in a longer period of time generally having lower
self-e�cacy (C. S. Carmichael, Dunn, & Taylor, 2006; C. Carmichael & Taylor,
2005). In a group of so-called �adult learners�, Klinger (2006) con�rmed a result
from several previous studies and showed that although the negative perceptions of
mathematics widely held by the general population and demonstrated to negatively
impact on mathematics performance where represented strongly on initial enrolment
into a mathematics bridging course, that these negative perceptions changed dra-
matically during the course. The conclusion being that although yes, these negative
perceptions of mathematics are highly predictive of performance, they can also be
substantially in�uenced by early learning experiences, and should certainly not be
thought of as �xed variables. In a later study, Klinger (2008) replicated a simi-
lar study but across several disciplines of study and showed that arts/humanities
had substantially lower mathematical self-e�cacy and more negative perceptions to-
wards mathematics than the science students. Notably, Klinger (2008) also showed
a strong link between their quantitative results around mathematical self-e�cacy/
negative perceptions of mathematics and gender � with female students scoring
worse than males. All this research only further supports that weak mathematical
skills cannot be addressed with content alone, but that the students negative pre-
conceptions towards mathematics and poor mathematical self-e�cacy views must
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also be addressed in order to support students on their way to success in a variety
of �elds of study, not only the study of mathematics. These results are all strongly
in support of the Ramirez et al. (2018) �Interpretation Account� framework shown
in Figure 3.1 as well as the �curriculum-diamond� model shown in Figure 1.2 in the
sense that they imply a joint approach is required: simultaneously improving students
knowledge/ skills and their self-e�cacy/ a�ect towards mathematics. These two are
so inextricably linked, that one cannot hope to successfully address one without also
addressing the other. (Taylor & Galligan, 2006) used conversation theory framework
to design an approach that was intended to simultaneously develop students' math-
ematical knowledge/ skills and improve their mathematics self-e�cacy/ con�dence,
which was shown to be e�ective.

To summarise in the words of Galligan and Taylor (2008):

�... although attitudes and beliefs about mathematics are important for
students enrolled in bridging programs, the programs can change stu-
dents' attitudes and beliefs about mathematics as well as their achieve-
ment.�

3.6 Implications for Bridging Courses

One of the primary roles of bridging courses is to facilitate students secondary-tertiary
education transition. Often the students enrolling in bridging courses will have either:

• Performed poorly in mathematics in secondary school,

• Chosen to study mathematics at a intermediate or elementary level in secondary
school, or

• Had a substantial time gap between completing secondary school and engaging
in tertiary education,

or some combination thereof. All of these possibilities will be associated with higher
than average levels of mathematics anxiety, and negative preconceptions of mathe-
matics. So, in this context, the question here is

How can a bridging course best support students through their transition
into tertiary education?

At a fundamental level, there are two key barriers that these students must over-
come to be successful in their tertiary education:

• Developing su�cient mathematics skills, capabilities, and knowledge. This can
be addressed through content � curriculum, and traditional teaching practices.

• Overcoming/ changing negative perceptions/a�ect/anxiety towards mathemat-
ics. This is di�cult to address, but there are a number of approaches suggested
in the literature.

These two key barriers must both be addressed simultaneously in order to have an
e�ective and long-lasting impact on student's success. This conclusion is consis-
tent with all the literature reviewed in this chapter, and is an implication of two of
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the major frameworks considered in this work: the curriculum-assessment diamond
framework discussed in Section 1.2 and shown in Figure 1.2, and the �Interpretation
Account� of Ramirez et al. (2018) shown in Figure 3.1. These two frameworks come
from completely di�erent perspectives and literatures, i.e. curriculum design and
maths anxiety respectively, and yet they are both consistent in the conclusion that
neither content nor learning experience � performance nor a�ect, can be consid-
ered alone when designing e�ective curriculum/ interventions. Both aspects must be
taken into account in order to design e�ective curriculum/ interventions.

Students having completed bridging courses have commented on the importance
of this kind of combined approach. In the survey of Gordon and Nicholas (2013b),

�students are aware of the value of the bridging courses not only to ame-
liorate prior di�culties with mathematics and improve their approaches
to learning mathematics but, less transparently, as an important oppor-
tunity to facilitate their transition into higher education, meet fellow
students and help realise their potential.�

Core to addressing the �rst of these two key barriers is the content, and what the
appropriate content to teach in the bridging courses will be the focus of Chapter 4.
In terms of how to best address the second of these key barriers, there are a number
of points on which there is broad agreement amongst the literature reviewed in this
chapter, but there is a single message that draws together most of these points,
which is to:

SET CLEAR EXPECTATIONS.

To give some examples of how this is featured in the literature, the �rite-of-passage�
model of Clark and Lovric (2008) suggests it is critical to set clear expectations
around the new (tertiary) learning environment, as students are transitioning into a
new and unfamiliar social environment/ community, it is critical to be explicit with
them about the expectations in this new environment (i.e. independent learning,
didactic lectures, etc.). The �rite-of-passage� model also suggests it is important
that expectations be set for students about the di�culty of this transition beforehand
(in the years prior to them making the transition to tertiary education) so that they
come into the transition expecting it to be di�cult and therefore being prepared for
that di�culty. This perspective is further supported by the literature on how the
perspective of viewing the process of learning mathematics (or learning in general)
through the lens/ expectation of �productive struggle� particularly in the context of
intervening to help maths anxious students � a concept that has been extensively
demonstrated to be both critical and e�ective for supporting students (Wang et al.,
2015; Lin-Siegler et al., 2016; Hiebert & Grouws, 2007; Carlson, 1999). Similarly,
approaches taken from clinical psychology for the treatment of generalised anxiety
disorders have been successful in helping maths anxious students, and re�ect the
same principles behind the concept of �productive struggle�. Universities relaxing
pre-requisites to �assumed knowledge� is a good (bad) example of not setting clear
expectations, and this impacting directly on students (Gordon & Nicholas, 2015).
Some of these points are beyond the scope of this work, but there are also actions
that can be taken from the perspective of teaching a bridging course to mitigate some
of these concerns: even if students come into university without the expectation of
it being a di�cult culture-shock event and are not prepared, being clear and explicit
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with them about how it will be di�cult, but that that is ok and pointing them towards
support services, can still have a positive impact. Similarly, changing university entry
requirements is beyond the scope of this work, but even so when students come into
the bridging courses with misconceptions such as �mathematics is not important to
being successful in science�, correcting these misconceptions can be very bene�cial
for them in terms of their success in pursuing their goals in the longer term.

Additionally, although the generalisation �set clear expectations� does bring to-
gether many of the recommendations implied by the literature, it does not cover
everything. Some additional recommendations not covered by �set clear expecta-
tions� include:

• Helping students meet other students, make friends, and develop a social sup-
port network in their new environment is critical to supporting them to be suc-
cessful, this is implied by the �rite-of-passage� framework of (Clark & Lovric,
2008), but also by a swath of other literature (Trotter & Roberts, 2006; Peat
et al., 2001; Leese, 2010; Gordon & Nicholas, 2013b).

• An emphasis on �learning-to-learn� programmes has been shown to be e�ective
(Zeegers & Martin, 2001). This is already ingrained into the culture of the
MLC at the UofA thanks in large part to the work of Dr. David Butler and
Nicholas Crouch over the past decade, and if anything this is a point that
other bridging course programme directors could learn something from the way
that the MLC at the UofA emphasises �learning-to-learn�. It is a subtle, but
powerful, mechanism for supporting students.

Finally, there are some other important discussion points to be aware of, although
no speci�c actionable recommendations come from them:

• Success in secondary school mathematics is highly predictive of success and
even participation in tertiary mathematics education. This predictive e�ect is
larger than the e�ect of any bridging course on retention and success in tertiary
eduction (Kajander & Lovric, 2005; Nicholas et al., 2015). This is important
to be aware of, but unfortunately falls outside of the scope of a bridging course
to address. Instead, we have to rely on secondary school educators to continue
working to improve this.

• Negative community perceptions of mathematics in�uence rates of maths anx-
iety, engagement and ultimately success in mathematics educations of our
students (King & Cattlin, 2015; Gordon & Nicholas, 2013b; Clark & Lovric,
2008). Again, negative community perceptions is (somewhat) beyond the
scope of a bridging course to address but it is critical to be aware of the
impact it has, and to be fair it does fall on all mathematicians but even more
so non-mathematician mathematically skilled people and educators (including
those teaching a bridging course) to gradually create the social change needed
to adjust such widespread community perceptions. Broad cultural change is
somewhat beyond the scope of this work, however.
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Chapter 4

Curriculum Mapping

One of the important roles of university mathematics bridging courses (such as Math-
sStart and MathsTrack) is to �ll the content knowledge gap for students who wish
to commence study that has some required knowledge and skills in mathematics,
but either did not complete mathematics to a su�ciently high level in high school,
or completed it long enough ago that they need to re-learn the skills. Ultimately,
the content of such bridging courses needs to align with the �Industry Standards�
or �Standards of Performance� and in particular the �Curriculum Objective� of the
curriculum assessment diamond model (Figure 1.2).

There are two key perspectives that can be taken on what the �Curriculum Ob-
jective� of a mathematics bridging course is: the knowledge required for the future
(tertiary) study the students are going to engage in, and knowledge expected from
high school graduates. As we will come to see, these two angles or perspectives
can be quite dramatically di�erent. From the perspective of knowledge expected
from high school graduates, in Australia the AC serves as a good guide, but even so
the exact content knowledge expected of students having completed high school in
Australia varies for a number of reasons:

• To begin with, the AC speci�es four levels of mathematics: essential math-
ematics, general mathematics, mathematical methods, and specialist mathe-
matics. Our focus will be on the higher two of these: mathematical methods
and specialist mathematics, as these are the ones targeted at university entry
into mathematics-intensive courses.

• Di�erent states within Australia teach di�erent curricula, with varying degrees
of alignment to the AC. In South Australia the primary curriculum taught in
senior secondary school is SACE, and so we will focus on that.

• Occasionally, students will do the bridging course and then travel internationally
to study in which case the expectations placed on them will be based on an
entirely di�erent curriculum. This is comparatively rare, but also the modern
international education system has a remarkable level of homogeneity partially
as a carry-over consequence of the western colonial era (Mohandas et al.,
2003). Regardless, it is beyond the scope of this work to consider alignment
of content to high school curricula internationally, although this would make
for interesting future research.

The other perspective is of course also important, but also far more di�cult to ad-
dress: the knowledge required for entry level university mathematics courses. This
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will vary hugely from course to course: a entry level calculus course will require very
di�erent knowledge than an entry level statistics course, for example. Even within
one discipline of mathematics, di�erent universities will have very di�erent expecta-
tions of entry level students: in particular, South Australian universities will often
structure their entry level mathematics courses to align with SACE even though not
all their students have completed SACE, because of the majority who have it is still
useful for them to do so. For example, the University of Adelaide re-structured it's
�rst year mathematics courses in 2018 to match changes in SACE. Similarly, univer-
sities interstate will often structure their entry level courses to align with their local
senior high school curriculum. That is only within dedicated mathematics courses,
other courses that also require mathematics knowledge and skills, such as engineer-
ing, psychology, health science, and medicine will all have their own requirements.
Bridging courses will enrol students aiming to study a wide variety of such topics, and
even more broadly also to go into non-university further study (notably pilot training
in the defence force, for example), which have di�erent requirements again.

This places a di�cult tension on mathematics bridging courses as to what content
to teach. Although many of the students enrolling in the mathematics bridging
courses at the UofA do so with the intention to begin study at the UofA (and hence
might bene�t from SACE structured content), many do not. Even amongst those
that do, some may end up going to a di�erent university interstate or even overseas
� plans change. So it is important to try and maintain some connection to a broader
set of knowledge expected in general and not necessarily remain laser focussed on
the requirements of the particular university courses most students are going to be
attempting. This is one of the reasons why the AC is a useful construct as even
though some states do not align to the AC as well as others, it still forms a guiding
structure at a national level and individually considering the curriculum taught in
each state is beyond the scope of this work. Tailoring the content of the bridging
courses more narrowly to target entry into particular disciplines (say calculus/ matrix
algebra/ statistics for example) could potentially still be of interest down the line,
but is likely to be unrealistic with the current resources available to the UofA MLC.

Because of the di�culty of aligning the content to the future requirements of
students due to their variety of di�erent directions and needs, and considering that
the majority (over half) of students enrolling in MathsStart and MathsTrack plan on
enrolling in tertiary study at the UofA, the focus of this curriculum mapping will be
on aligning the content of the bridging courses to the SACE curriculum. That said,
the alignment of the SACE curriculum to the AC will also be considered, in order
to give some idea of the national alignment (and it turns out the AC is very closely
aligned to the SACE curriculum). Now that said, the di�erent directions students
are going is still very important to consider, and although a direct alignment to the
plethora of options students pursue is not realistic, the needs of the most common
of these options will be incorporated into the discussion surrounding the curriculum
alignment presented in this chapter. Even if direct alignment to these needs cannot
be achieved, it is none-the-less important to be aware of these needs, as these are
critical to students future success, and while it might not be realistic to tailor the
content of the bridging courses to each of these contexts, di�erentiation can still
be achieved through an awareness of these needs and individual interactions with
students each of which will often have a particular future direction in mind.

This chapter will be structured as follows. First, in Section 4.1, some notation will
be introduced and the content of each of the three curricula that will be systematically
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reviewed:

• The AC senior mathematics subjects mathematical methods and specialist
mathematics,

• The SACE curriculum stage 1 mathematics, stage 2 mathematical methods,
and stage 2 specialist mathematics,

• The University of Adelaide's bridging courses: MathsStart, and MathsTrack.

Note that the alignment done here is entirely on the content of these curricula, noth-
ing else. The focus of this chapter is entirely on content. The alignment between
the content in these curricula will be considered in Section 4.2 (see Figure 4.1),
and alignments/ misalignments discussed. Finally, the discussion throughout around
alignment and gaps between the content of these curricula and courses will be sum-
marised, explanations and reasons for these discrepancies discussed, and potential
modi�cations to content suggested.

Beyond that, this chapter will also brie�y discuss the alignment of these bridging
courses to �rst year university mathematics courses and bridging courses o�ered
by other universities in Australia, and discuss the relationship between the gaps in
alignment between the AC/SACE and the bridging courses and the requirements of
these �rst year university courses.

4.1 Content

The curriculum alignment in this chapter is presented at two levels of detail � the
topic level, and the key concept level. The terms �topic� and �key concept� are
reserved in the context of this discussion to speci�cally refer to these levels of detail.
The content of each of the senior high school curricula, as well as the university
bridging courses, is broken down into topics, and each topic can be summarised
as covering a number of key concepts. In Section 4.2, the alignment between these
curricula and bridging courses will be considered thoroughly at both a topic-level, and
to the �ner detail of particular key concepts. Although the key concept alignment
is in essence the core of the work, as this is what allows for concrete changes to be
made and content to be planned, the purpose of the topic level comparison is to help
structure the overall alignment and discussion.

4.1.1 Notation

In order to provide a useful curriculum-wide topic-level alignment to structure our
thinking, it is important to be able to present this alignment in a comprehensible
form that can be viewed on a single page. In order to achieve this, the topic-level
description (identi�cation of topics) needs to be summarised concisely enough. This
is achieved in Figures 4.1 and 4.2, by identifying each topic with an abbreviated
code. These abbreviated codes are presented in Table 4.1 and will be used for the
remainder of this chapter to help refer to and identify topics. Each topic in each of
the curricula being considered is assigned a unique identifying code in Table 4.1, and
the curriculum (and subject within it) can be easily seen from the structure of the
code.
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Table 4.1: Abbreviated codes for topics within the AC and SACE senior mathematics
subjects: Mathematical Methods and Specialist Mathematics, as well as the UofA
bridging courses: MathsStart and MathsTrack. Square brackets ([]) are used to
indicate numeric values that can vary.
Code Meaning

MMu[#1]t[#2] AC Senior Mathematical Methods Unit [#1], Topic [#2]
MMu[#1]t[#2] AC Senior Specialist Mathematics Unit [#1], Topic [#2]

S1M[#] SACE Stage 1 Mathematics, Topic [#]
S2MM[#] SACE Stage 2 Mathematical Methods, Topic [#]
S2SM[#] SACE Stage 2 Specialist Mathematics, Topic [#]

MS[#] Maths Start, Topic (Booklet) [#]
MT[#] Maths Track, Topic (Booklet) [#]

4.1.2 Key Concepts

Appendix A provides a description of each topic in each of the curricula considered
here: the AC Mathematical Methods and Specialist Mathematics, SACE stage 1
mathematics, stage 2 mathematical methods and stage 2 specialist mathematics,
and the UofA MathsStart and MathsTrack programs. For brevity, the codes from
Table 4.1 are used to identify each topic. The name of each topic is given in bold,
followed by a list of the key concepts covered in that topic separated by commas.
These are discussed at length for the remainder of this chapter, and the table pre-
sented in Appendix A is intended to be used as reference material while reading the
content of this chapter.

Some notes on the way the key concepts are summarised:

• The key concepts listed for each topic are intended for a reader deeply familiar
with the content, and as such it is heavily condensed and uses standard math-
ematical notation and terminology without the usually appropriate rigorous
de�nitions.

• Concepts relating to "interpretation" and application in a general sense are
omitted from the key concepts of a topic. The assumption is that to the
intended readers, these should go without saying. For example, in S1M2 the
key concept "Quadratic Equations in Vertex and Factorised Form" is included,
but this implies a variety of auxiliary knowledge which is not explicitly included
in the key concept summary: the interpretation of roots and vertices, deducing
vertices and roots from the equation of a quadratic, or deducing the equation
of a quadratic given these bits of information, etc. These are skills directly and
universally associated to the key concept, and it is assumed that an experienced
mathematics educator (which is the intended audience for this text) should be
able to easily deduce such surrounding associated skills from the key concepts
listed.

These restrictions in the key concept summaries are necessary in order to be able
to present this curriculum alignment concisely enough that it can be useful. The
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curriculum documents used to generate these summaries contain all the additional
detail if required, but the purpose of this work is to align the content in those
documents to identify gaps and misalignments, and as such it is bene�cial to be
as concise and dense as possible both to make the alignment a tractable problem
and also to make the discussion thereof comprehensible. That said, it is a delicate
balance between being broad and vague in order to be able to present the entire
curriculum mapping within a single frame of view, and yet still be granular enough
so that speci�c content is clear and explicitly and useful actionable recommendations
can be made. It is this tension that led to the development of the methodology which
split the two levels of detail:

• The topic level description is intended to give the broad strokes, to show the
entire mapping in a single frame of view (a page, in this case). It is also
intended to be reference material for the following more detailed discussion,
to aid the reader in structuring the information contained in the more detailed
discussion and place each piece of information into where it belongs in the
bigger picture. Being able to structure the detailed discussion into this larger
concept is critical for being able to reach broad overall conclusions.

• The key concept level is what comprises the bulk of the discussion, and this
is intended to be the granular level at which content is presented speci�cally
enough that recommended actions can be understood explicitly and imple-
mented easily. Note that although the key concept level is much more granular
than the topic level discussion, it is still intended as a summary and does not
include every single detail of the content, as discussed above.

4.1.3 Curriculum Structure

The AC

The AC is separated into it's F-10 curriculum, and senior secondary curriculum. In
this work we are only concerned with the senior secondary curriculum. The senior
secondary AC for mathematics is split into four subjects, corresponding to di�er-
ent �levels� of mathematics: Essential Mathematics, General Mathematics, Mathe-
matical Methods, and Specialist Mathematics. In this work we are concerned only
with Mathematical Methods and Specialist Mathematics, and will be considering
the mathematical content of these subjects not any other aspects (such as cross-
curricular priorities, for example). Importantly, the senior secondary AC does not
make any distinction between years 11 and 12 (typically the �nal year of high school
in Australia). So the senior secondary AC subject �Mathematical Methods� for ex-
ample, covers content that is in practice taught across both years 11 and 12. Each
of the two subjects we are concerned with in this work, Mathematical Methods and
Specialist Mathematics, are split into four �units� of content, and each of these units
is split into three topics, for a total of 12 topics per subject, and a total of 24 topics
that we will consider from the AC. At no point do we consider the unit structure
of the AC, partly because it does not have any analogue in the other curricula we
are aligning too, but mostly because it does not give a useful level of detail for our
purposes.

31



SACE

SACE, in comparison to the AC, does distinguish between year 11 and year 12 con-
tent, although to allow for some alternative senior high school teaching structures
they have a di�erent naming convention, calling them stage 1 and stage 2 respec-
tively. In the majority of mainstream cases in Australia, SACE stage 1 will correspond
to year 11, and SACE stage 2 will correspond to year 12. To further complicate mat-
ters, stage 1 SACE has only three levels of mathematics: Essential Mathematics,
General Mathematics, and Mathematics, while stage 2 SACE has four: Essential
Mathematics, General Mathematics, Mathematical Methods, and Specialist Math-
ematics. In this work we will only be concerned with SACE stage 1 Mathematics,
stage 2 Mathematical Methods, and stage 2 Specialist Mathematics. SACE stage
1 Mathematics is broken down into 12 topics, while stage 2 Mathematical Methods
and Specialist Mathematics are broken down into 6 topics each. This makes for a
total of 24 topics from senior high school SACE mathematics subjects that we will
be considering in the curriculum alignment presented in this chapter.

UofA Bridging Courses

The UofA o�ers two bridging courses through their MLC: MathsStart and Math-
sTrack. These are both taught through a series of booklets which conveniently each
contain roughly on �topic� worth of content, and so these booklets will be used as
the topic-level structure of these courses. Both courses are currently structured into
8 topics (booklets) each, although MathsTrack used to have 9, and the �fth was
removed some time ago, so the numbering of the MathsTrack topics have a gap
(they are numbered 1, 2, 3, 4, 6, 7, 8, 9). So there are a total of 16 topics (book-
lets) across both bridging courses that will be considered in the curriculum alignment
presented in this chapter.

Topic Grouping

In order to help structure the discussion to follow, it will be useful to think about one
broader level of detail, which will loosely be referred to as �content areas�. From a
very low level of detail perspective, the topics in each of the curricula being considered
can be grouped into the following �ve broad content areas:

• Functions and Graphs,

• Calculus,

• Geometry and Linear Algebra,

• (Complex) Numbers, and

• Probability and Statistics

There is also some nested hierarchical structures within these content areas that are
useful to understand. For example, both �Functions and Graphs� and �Calculus� can
be further separated into three sub-areas, corresponding to di�erent categories of
functions. Speci�cally:

• Linear, Polynomial, and Rational Functions,
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• Exponential and Logarithmic Functions, and

• Trigonometric Functions.

�Calculus� is naturally divided into di�erentiation and integration, �Probability and
Statistics� can be divided into probability and statistics as separate content sub-areas,
although more commonly is divided into discrete and continuous random variables.
Geometry and Linear Algebra covers perhaps the widest variety of topics, from vectors
to matrices to systems of equations as well as more traditional geometry topics such
as circle theorems.

The two areas (�Functions and Graphs� and �Calculus�) are also often taught
together, with new categories of functions being introduced/ revised together with
concepts around how to do calculus with these functions, so this particular pair of
content areas are very closely linked. Although there are some notable connections
between the other content areas, such as for example:

• Complex numbers providing a method for �nding roots to polynomials that
could not otherwise be found,

• Applying calculus to parameterised vector equations,

• Integration being used to understand probabilities as areas under distribution
functions,

Broadly speaking they stand comparatively apart from each other, particularly Prob-
ability and Statistics.

This broad content area grouping of topics covers almost all of the content in
all the curricula considered here. The only notable exceptions being MMu2t2 from
the AC and S1M7 from SACE both covering primarily sequences (geometric and
arithmetic) as recurrence relations, and S2SM1 from the SACE covering inductive
proof, neither of which �t neatly into any of the content areas above. With that
having been clari�ed, these content areas will be used to help structure the discussion
for the remainder of this chapter.

4.2 Curriculum Mapping

Figure 4.1 shows the topic-level alignment between the AC, SACE, and bridging
courses, organised by subject/ course. Each node (ellipse) in Figure 4.1 corresponds
to a topic, and is identi�ed by the abbreviated code as per Table 4.1. What �organised
by subject/ course� means in this context is that while the curricula (the AC, SACE,
and the UofA bridging courses) are arranged as columns in Figure 4.1, within each of
these columns topics are grouped by subject. So for example in the AC column topics
are grouped into Mathematical Methods topics, and then Specialist Mathematics
topics.
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Figure 4.1: Curriculum Mapping by Subject/ Course
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The topic-level alignment organised by subject/ course shown in Figure 4.1 is
the broad, eagle-eye, view of the alignment between the content in these topics, but
even from this wide-view the way in which the curriculum structures of the AC and
SACE discussed in Section 4.1.3 align to each other is reasonably clear. It can be
seen for example, that roughly speaking the �rst 6 topics of senior secondary AC
Mathematical Methods and Specialist Mathematics map to the 12 topics of stage
1 SACE Mathematics, while the last 6 topics in each of these AC subjects map to
the 6 topics of the corresponding stage 2 SACE subject. At a key concept level
this alignment is imperfect (and this is discussed in more detail below) to varying
degrees of imperfection, and some of these imperfections are visible in the imperfect
alignment shown in Figure 4.1, but broadly speaking the AC and SACE are actually
very closely aligned (and this makes sense given SACE was recently modi�ed with
the explicit purpose of aligning it more closely to the AC). In contrast, it is much
less obvious how to interpret the alignment between SACE and the bridging courses
shown in Figure 4.1.

However, rearranging the topics shown in Figure 4.1 (permuting the columns) and
grouping them into the �ve broad content areas discussed above in Section 4.1.3:

• Functions and Graphs,

• Calculus,

• Geometry and Linear Algebra,

• (Complex) Numbers, and

• Probability and Statistics

gives us a much clearer picture, which is shown in Figure 4.2. Even though the
allocation of some topics into these content areas can be somewhat arguable partic-
ularly in a few edge cases (as mentioned above in Section 4.1.3), Figure 4.2 shows
a very clear picture in terms of the SACE-bridging course alignment: the bridging
courses do not contain any probability or statistics what-so-ever, and very very little
on complex numbers.

Before moving on to discuss the details of the key concept level alignment within
each of these topic alignments shown, a quick note on interpreting the visualisations
of Figures 4.1 and 4.2. While solid lines connecting topic-nodes represent almost
complete or substantial key-concept level alignment, dashed lines are used to repre-
sent tenuous connections with only a small overlap in key concept terms, usually just
a single key concept. To brie�y cover which concepts these correspond too:

• The one dashed line between the AC and SACE essentially represents the
concept of anti-di�erentiation,

• The dashed line between S2SM3 and MT7, as well as the one between S2SM3
and MS4 essentially represents sketching rational functions, although in MS4
only reciprocal functions and transformations thereof are considered. The ideas
surrounding the sketching of these graphs and the properties of these graphs
(asymptotes, etc.) are heavily emphasised as a way to explore them in both
cases.
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• The dashed line between S2SM5 and MT9 essentially represents integration by
substitution.

• The dashed line between S2SM4 and MT2 essentially represents row opera-
tions, in MT2 introduced on matrices, but in S2SM4 it is introduced explicitly
in the context of solving 3 × 3 systems of linear equations. Similarly the
dashed line between S2SM4 and MT4 represents essentially the same concept
in S2SM4, but in MT4 the system of equations perspective/ application is
explored, which is not really done as much in MT2.

4.2.1 The AC and SACE

At a glance, there appears to be a very good one-to-one alignment at the topic level
between the AC and SACE. Broadly speaking the biggest di�erence between these
two curricula is their structure, as discussed in Section 4.1.3. As usual however,
the devil is in the details. In this section, a detailed discussion of the key concept
level alignment between the AC and SACE will be presented. This discussion will be
structured by the broad content areas as introduced in Section 4.1.3.

Functions and Graphs

The content area �Functions and Graphs� can be reasonably spit into three con-
tent sub-areas in both the AC and SACE: Polynomials and Rational Functions, Ex-
ponential and Logarithmic functions, and Trigonometric Functions, as discussed in
Section 4.1.3, with the notable additional comment that in both the AC and SACE
general concepts and notation are strongly emphasised and introduced through the
Polynomials and Rational Functions topics. The content in this area aligns almost
perfectly between the AC and SACE, with only minor di�erences in notation, empha-
sise, and how key concepts are split into topics. Despite this very close alignment, a
more detailed topic by topic discussion of the key-concept level alignment is included
for completeness:

• Polynomials and Rational Functions: In both the AC and SACE this
area is split into two: basic introduction and advanced concepts.The basic
introduction topics align well (MMu1t1 to S1M1 and S1M2), with only slight
di�erences in terminology (AC refers to inverse proportion while SACE refers
to reciprocal for example) and focus (SACE puts much more of an emphasis
on polynomials, separating it into it's own topic (S1M2) and breaking it down
into much more granular concepts). The advanced concepts are covered in
SMu3t2 and S2SM3 are essentially identical.

• Exponentials and Logarithims: There is essentially perfect alignment be-
tween the concepts for logarithms between MMu4t1 and S2MM4. Similarly,
MMu2t2 is almost exactly the same as S1M7, they are both centred on the
introduction of recurrence relations, partial sums, and linking this back to ex-
ponential functions. I include these topics under exponentials as they link to
and are used to introduce those concepts, but really the bulk of the content
in these topics is focussed on sequences and series. The alignment between
MMu2t1 and S15 has a notable di�erence however: S15 includes Log-Laws,
while MM2t1 does not, focusing only on Index Laws. This is not actually a
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di�erence in content between the AC and SACE as the log laws are covered
in the AC in MMu4t1, but a di�erence at the topics level. The log laws are
actually repeated in the SACE curriculum, covered both in S1M5 and then
again in S2MM4, while they are not repeated in this way in the AC.

• Trigonometry: MMu1t2 matches almost identically to S1M3, with the biggest
di�erence being that in the AC the unit circle interpretations/ de�nitions of
sin(x), cos(x), and tan(x) are emphasised, where in SACE tan(x) in particu-
lar is introduced instead as sin(x)

cos(x)
. That being the biggest di�erence between

the two should emphasise how similar they are in terms of content. Similarly,
SMu2t1 and S1M10 align just about perfectly.

Calculus

Similarly to Functions and Graphs, there is very good alignment between the AC and
SACE in the Calculus content area but for completeness a detailed discussion of the
key concept level alignment on a topic-to-topic basis in included:

• SMu4t1 aligns perfectly with S2SM5, both covering integration by parts, by
substitution, inverse trig substitutions in integration problems, volume of solids
of revolution, partial fractions and area between two curves.

• SMu4t2 aligns well to S2SM6, both covering implicit di�erentiation, solving
�rst-order separable di�erential equations, and the logistic equation. However
there are some di�erences in that the AC goes on to focus on rates of change,
while SACE instead decides to focus on parameterised curves � trigonometric
parameterisations and such.

• MMu2t3 and S1M6 both introduce di�erentiation by leading in with the con-
cept of average rate of change, �rst principles and lead into linearity of dif-
ferentiation, derivatives of polynomials, slope of the tangent and optimisation
but in SACE S1M6 introduces the terms �increasing� and �decreasing� and sign
diagrams, which are not mentioned in MMu2t3, while MMu2t3 introduces the
concept of an anti-derivative (which is only introduced in S2MM3 of SACE
and is represented by a dashed line in Figure 4.1 and Figure 4.2).

• MMu3t1 and S2MM1 align perfectly introducing the chain, product, and quo-
tient rule. Introducing e = 2.718 . . . in the same way (using �rst principles
to explore d

dx
ax for di�erent a, derivatives of sin(x) and cos(x), and second

derivatives.

• MMu3t2 and S2MM3 are very closely aligned, both introducing de�nite and
inde�nite integrals of polynomials, exponentials, and trigonometric functions,
linearity of integration and the fundamental theorem of calculus. They do
however diverge slightly in their approach to de�nite integrals. In particular,
SACE S2MM3 introduces the concepts of upper and lower sums and the de�nite
integral as the unique number between the two as the size of the rectangles
approaches zero, while in the AC MMu3t2 this is not discussed. Also, S2MM3
introduces anti-di�erentiation, a concept introduced in the AC MMu2t3 but
not introduced in SACE S1M6, instead being covered here in S2MM3.
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Note how most derivatives are introduced in di�erentiation (i.e. calculus) speci�c
topics. The exception is d

dx
ln(x), which is introduced in a separate topic entirely

about logarithm functions in both the AC (MMu4t1) and SACE (S2MM4), and in this
content area structuring these topics are categorised under `Functions and Graphs'
because they introduce logarithmic functions, but it should be noted that they do
also contain concepts around calculus (of logarithm functions).

Geometry and Linear Algebra

The content area �Geometry and Linear Algebra�, similarly to �Functions and Graphs�,
can be split into four content sub-areas in both the AC and SACE: Vectors in R2 (in
the Plane), Circle Theorems, Matrices and Vectors in R3 (in 3D).

• Vectors in the Plane are covered in SMu1t2 and S1M9, with the content
being very well aligned and the only notable di�erence being the inclusion
of geometric vector proofs in SACE S1M9 which is not included in SMu1t2,
instead being restricted to topics such as SMu1t3.

• Circle Theorems and Proof are covered in SMu1t3 to S1M8. Both these
cover the same "content" in the sense of theorems: circle theorems, but they
also both attempt to broach the di�cult topic of proof, methods of proof, and
some of the language around proof, and they take quite di�erent approaches to
this. The AC SMu1t2 is quite explicit specifying the introduction of language
around formal logic, de�ning the terms: �implication�, �equivalence�, �con-
verse�, �negative�, �contrapositive�, �contradiction�, �for all�, �there exists�, and
�counter-example�. On the other hand, SACE S1M8 simply speci�es proof to
be investigated as "justi�cation of properties of circles", and only brie�y men-
tions speci�cs of language and methods as suggestions not specifying them as
being required components of the curriculum and instead leaving the approach
and speci�c content chosen to be used to introduce the concept of proof much
more open to interpretation by the teacher.

• Matrices, covered in SMu2t2 and S1M11 are essentially identical in content
covering matrix notation, linear combinations of matrices, matrix multiplica-
tion, matrix identity and inverses (and determinants), and the perspective of
matrices as linear transformations.

• Vectors in 3D in SMu3t3 and S2SM4 are also introduced very similarly in
terms of content: cross product, equations for lines and planes, systems of
equations and geometric interpretation of their solutions. One di�erence how-
ever is in how they apply these concepts, the AC SMu3t3 includes a focus on
parameterised vector equations, the equation for a sphere, and in particular
kinematics: projectile and circular motion in 3D, which are not converted in
SACE S2SM4. Instead S2SM4 remains more abstract with these concepts, and
on the other hand the examples required are less complex to interpret.

(Complex) Numbers

Complex Numbers are introduced in two topics, an introductory an advanced topic,
in both curricula. The introductory topics, SMu2t3 in the AC and S1M12 in SACE
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are quite similar in their base content: rational/ irrational numbers, i, complex
arithmetic, conjugates, and complex roots of polynomials. However there are a couple
of key di�erences between the two: �rst, induction is introduced in the AC SMu2t3
while in SACE it is separated into it's own seperate topic: S2SM1. The second key
di�erence is that interval notation is explicitly introduced in SACE S1M12, while in
the AC interval notation seems to be neglected. The advanced topics SMu3t1 and
S2SM2 on the other hand align almost perfectly in content.

Probability and Statistics

Probability and Statistics is the content area in which the most substantial di�erences
in content exist between the two curricula. Similarly to �Functions and Graphs� and
�Geometry and Linear Algebra�, the content covered in �Probability and Statistics�
can be organised into three content sub-areas: Combinatorics, Random Variables,
and Con�dence Intervals.

• Combinatorics and Introductory Probability are introduced in the AC
topics MMu1t3, SMu1t1, and the SACE topic S1M4. The content-overlap
between the two curricula in these topics is primarily concepts around per-
mutations, the factorial (and the `multiplication principle'), and combinations.
Although it is notable that the AC MMu1t3 extends the concept of combi-
nations to binomial coe�cients and Pascal's triangle while SACE does not.
Beyond these common concepts, both curricula have some introductory prob-
ability content, but they take very di�erent approaches to this. The AC does
this via set theoretic concepts: union, intersection and complement of sets,
the pigeon-hole principle, and uses probability notation (P (A)) to take the
set-theoretic ideas of complement, intersection and union into a probability
context. In this same frame of mind, the AC also introduces the introduc-
tory probability concepts using the same formal notation, i.e. 0 ≤ P (A) ≤ 1
and conditional probabilities (P (A|B)) for example. On the other hand, SACE
S1M4 has introductory statistics concepts (as opposed to introductory probabil-
ity concepts). Speci�cally, S1M4 reviews mean median and mode, interquartile
range, standard deviation, and introduces the basic concepts around the nor-
mal distribution. S1M4 also introduces the distinction between discrete and
continuous random data/ variables, not quite introducing the concept of a
`random variable' per se, but laying the foundation for that introduction.

• Random Variables: Discrete (MMu3t3 and S2MM2), and Continuous (MMu4t2
and S2MM5). There is quite good alignment between these topics actually. For
both discrete and continuous general de�nitions of expected value and variance
are given. For discrete the uniform, examples of arbitrary non-uniform (de�ned
values), the Bernoulli, and binomial distributions are introduced. For continu-
ous the uniform, arbitrary function (for example restricted domain polynomial),
and normal distributions are considered, and transformations of normal distri-
butions (in particular to get the standard normal) are considered. The key
di�erence between the curricula in these topics is that in SACE the central
limit theorem is explicitly explored, while it's signi�cance is implied but not
explicitly explored in the AC. It is notable that it appears that while SACE
explicitly introduces the concept of a cumulative distribution function, the AC
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does not (although the AC does still introduce probabilities associated to con-
tinuous random variables as areas under, i.e. integrals of, probability density
functions).

• Con�dence Intervals: The con�dence intervals introduced are the same
across both curricula, speci�cally the normal approximation to the binomial
con�dence interval for a proportion (Wald interval, MMu4t3) and the standard
normal distribution con�dence interval for the mean of a continuous variable
(SMu4t3) are both introduced in SACE S2MM6. However the approach taken
to justifying these con�dence intervals is a little di�erent, in SACE the justi�-
cation heavily relies on the central limit theorem, relying on the introduction
to that concept in S2MM5, while in the AC instead many of these concepts
(including the central limit theorem itself) are simply stated and students are
encouraged to test them by simulation. Although SACE also takes this simu-
lation approach to justi�cation it is emphasised less, and the introduction of
the theory surrounding the central limit theorem is much more explicit.

Summary

Overall the AC and SACE are very closely aligned in terms of content, as is to be
expected given the focus given by the SACE board to national curriculum align-
ment. That said, there are some di�erences between the two, with the biggest of
these di�erences being in the introductory statistics/ probability section, with the
AC introducing a substantial amount of combinatorics and set theory notation and
terminology, while SACE introduces less combinatorics (although still some), and
opts to focus on revising introductory statistics (mean, median, mode, etc.) instead
of introductory set-theoretic probability concepts (intersection, union, etc.). This is
likely to do with all of these concepts technically being covered in the year 10 AC,
and the two curricula relying on di�erent parts of this assumed knowledge to varying
degrees. Apart from a small number of di�erences in precise content alignment, (for
example, SACE does not explicitly introduce the concept of a cumulative distribu-
tion function while the AC does), the two curricula take quite di�erent approaches to
the statistics and probability content area overall, with the AC focusing on the the-
ory much more, while SACE focusses instead on investigating behaviour empirically
more. The only other substantial di�erence between the AC and SACE outside of
the probability and statistics content area is in how the concept of proof is integrated
into the curriculum. While SACE attempts to introduce the concept of proof in a
variety of contexts, geometric proofs in particular, the AC in contrast only introduces
proof as a relatively isolated concept, in a more limited number of contexts.

4.2.2 MathsStart and MathsTrack

In the broad sense of the �ve content areas discussed in Section 4.1.3, it can be
seen from Figure 4.2 that two of these content areas � Complex Numbers and
Probability and Statistics � are essentially not covered by MathsStart or MathsTrack
whatsoever. In Figure 4.2 MS1 is grouped into the (Complex) Numbers content area,
as it includes an introduction to rational/ irrational numbers, but it does not include
any reference to complex numbers at all. On the topic of complex numbers, it is
notable that the 'missing' MathsTrack Topic 5, which was part of MathsTrack in
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the past but is currently being omitted from the course, covered complex numbers.
So if including content on complex numbers was of interest, MT5 could be used as
a starting point for better aligning the content of the bridging courses to the AC/
SACE in the content area of complex numbers. That said, for the purposes of this
curriculum alignment, we are more concerned with the content that is currently in
the bridging courses and so this section will discuss the key concept level aligned on a
topic-by-topic basis for the remaining three content areas that are currently covered
in the bridging courses: Functions and Graphs, Calculus, and Linear Algebra.

Functions and Graphs

Just about the entire of MathsStart is concerned with this content area, as well as
the �rst topic of MathsTrack MT1. This is the content area used in both the AC and
SACE to introduce general concepts around functions which will be used throughout
several of the following topics, and at a high level the bridging courses are taking this
same approach: using the general content area �Functions and Graphs� to introduce,
explore, and acclimatise students to general concepts and ideas. So although speci�c
functions and their properties are introduces as well (i.e. Polynomials and Ratio-
nal Functions, Exponential and Logarithmic Functions, and Trigonometric Functions
much as in the AC and SACE, the intention seems to be less on the speci�cs of
these functions and more on building a solid foundation of general understanding,
familiarity, and comfort with the concepts in order to be able to build on in later
topics. This implicitly means that underlying the content in these topics there is an
intention to prompt students to be practising and revising skills such as rearranging
equations, fractions, and arithmetic as these will be foundational for students moving
forward from MathsStart.

It is interesting to note how it is intended that MathsStart be, in a very rough
sense, equivalent to year 11 mathematics, while MathsTrack is intended in a similarly
rough sense to primarily cover the content of year 12 mathematical methods. However
because of the importance of establishing these foundational skills and understand-
ings in MathsStart unlike the SACE curriculum which roughly speaking introduces the
basics of each new idea in year 11 and then extends this into advanced applications
and understandings in year 12, MathsStart completely omits certain topics in favour
of establishing foundational skills more concretely, and then MathsTrack, particularly
in the later topics, covers new ideas end-to-end in a single topic. To further explore
the speci�cs of this alignment, a topic-by-topic key concept level alignment discus-
sion is presented below, organised in the same way that the �Functions and Graphs�
content area has been previously split into content sub-areas: Polynomials and Ratio-
nal Functions (and General Concepts), Exponential and Logarithmic Functions, and
Trigonometric Functions

• General Concepts, Polynomials and Rational Functions have an inter-
esting binary tree structure that can be observed in Figure 4.2, with the AC
MMu1t1 splitting into both S1M1 and S1M2 in SACE, which each split into
MS2, MS4 and MS3, MT1 respectively in the bridging courses. S1M1 covers
mainly linear equations, but also reciprocal functions and asymptotes, while in
MathsStart these are split: linear functions are covered in MS2 while recip-
rocal functions and asymptotes are covered in MS4. Similarly S1M2 covers
polynomials, including quadratics and related concepts as well as higher or-
der polynomials, while in the bridging course these are separated with MS3
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focussing entirely on quadratics (MS3), and MT1 which provides a more in-
depth exploration of quadratics and introduces higher order polynomials. It is
notable that although the entire of MS3 is dedicated to quadratics, it is still less
in-depth than S1M2, which introduces rearrangements of quadratics into vertex
and factorised form, but the missing concepts (such as the quadratic formula)
are covered in MT1. S2SM3, also part of �Functions and Graphs�, introduces
advanced general concepts on functions: domain and range, function compo-
sition, one-to-one, inverse functions, graphing more general rational functions
(not just reciprocal functions), and the absolute value function. These con-
cepts are not covered in the bridging courses, and could be useful, but on the
other hand, are part of the specialist mathematics curriculum, and so whether
they need to be covered in the bridging courses is open to discussion.

• Exponentials and Logarithms: Both the AC and SACE introduce the con-
cept of exponential functions via recurrence relations describing geometric se-
quences, while the bridging courses do not use recurrence relations whatsoever.
Although this is certainly not the only (or even necessarily the best) way to
introduce and understand exponential functions, it is the way prescribed by
the AC and SACE curricula, and so this di�erence in approach might lead to
a di�erence (and worst-case scenario a systematic disadvantage) for students
coming out of the bridging courses as opposed to students coming out of a
SACE high school education, so adjusting the bridging courses to use concepts
of recurrence relations to introduce exponential functions might be worth con-
sidering. On the other hand, the way the number e is introduced is actually
identical across AC, SACE, and the bridging courses � which is remarkable
given how many di�erent ways this could be done. Interestingly, exponent laws
and logarithm laws (as well as basic properties of exponential and logarithmic
functions) are introduced in S1M5 of SACE, and are split into the two top-
ics MS7 and MS8, it seems that the granularity of the MathsStart program
is roughly a factor of two more granular than the SACE curriculum, which is
interesting. Developing a measure of �granularity� and estimating it's e�ect
on learning could make for an interesting line of future research, but is beyond
the scope of this work. It is also interesting to note that S2MM4 is grouped
into the �Functions and Graphs� content area in Figure 4.2, rather than be-
ing grouped in the �Calculus� content area, as discussed above this is because
of how concepts of exponents and logarithms are very distinctly separated in
the AC into MMu2t1 and MMu4t1, while in SACE introductory concepts for
both are introduced in S1M5 and S1M7, but while advanced concepts around
logarithms (including calculus) have their own topic in SACE � S2MM4, ad-
vanced concepts (such as calculus) around exponential functions do not, and
are instead lumped into more general calculus topics (S2MM1 in SACE and
MMu3t1 in AC). A more in-depth discussion of this is included below under
the �Calculus� content area, but su�ce it to say there is substantial overlap be-
tween the �Functions and Graphs� and �Calculus� content areas, which leads to
the crossovers seen in Figure 4.2 when these ideas are structured even slightly
di�erently as they are in the bridging courses. This could indicate that the cat-
egorisation of concepts into these two content areas is not the most appropriate
and maybe more appropriate content area groupings could be found for these
topics, or perhaps more likely simply that these concepts are highly intercon-
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nected and so are often taught together in an integrated way. Exploring this
in a broader sense, in terms of when concepts are taught separately and when
they are integrated together could make for very interesting future research
and very applicable to recent trends in educational research into STEM.

• Trigonometry: Similarly to the rest of the �Functions and Graphs� content
area, the trigonometry aligns fairly well between the AC/ SACE and the bridg-
ing courses, although it is organised di�erently (S1M5 and S1M10 in SACE
and MS5 and MS6 in MathsStart). SACE covers some graphing slightly more
comprehensively, talking about translations and dilations for example (a con-
cept from MS3 that could be �translated� here e�ectively, linking the concepts
and chaining them from topic to topic a little more strongly.

The �Functions and Graphs� content area aligns quite well between the AC, SACE,
and the bridging courses in terms of content. One of the most prominent di�erences
is in how the content is structured, both in terms of the �granularity�, and in terms
of how certain key concepts (for example concepts relating to exponential and loga-
rithmic functions) are grouped with other key concepts (such as grouping them with
calculus-concepts, or introducing them separately). Both of these di�erences could
make for interesting future research directions, however analysing the structural dif-
ferences between these curricula is, despite being very interesting, beyond the scope
of this work. It is notable for such future research though, that the methodology
employed here to align the content between these curricula seems to have been very
e�ective at identifying structural di�erences between the curricula, although this was
not the intended purpose of this methodology it is likely a result of the use of a
rigorously structured approach that yielded this information about structure which
could be leveraged by future research that was interested in investigating structural
di�erences between curricula that cover the same content in di�erent structures.

Calculus

The �Calculus� content area is a major focus on MathsTrack, because of the focus
of many entry level university courses on calculus, and so spans four topics: MT6,
MT7, MT8, and MT9. As such, it makes sense to structure the key concept level
alignment discussion below under these four topics:

• MT6 introduces di�erential calculus in a very similar way to S1M6, i.e. through
�rst principles. MT6 actually goes beyond the content of S1M6, introducing
also the product, chain and quotient rules (which are covered in S2MM1) and
implicit di�erentiation (which is only covered in S2SM6). On the other hand,
MT6 does not cover increasing and decreasing (which is in S1M6), which
is instead covered in MT7. All these di�erences are purely structural, not
di�erences in content between the curricula. A small but notable di�erence in
content between the curricula is that MT6 introduces the concept of a normal
to a curve, which is not covered anywhere in SACE (apart from implicitly in
S2SM4 in the context of vector cross product).

• MT7: covers a few concepts from S1M6 that where skimmed over in MT6,
as well as some of the more advanced function and graph concepts such as
sketching rational functions which is only covered in S2SM3.
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• MT8: Similarly to the way that MT7 mixes advanced concepts from the �Func-
tions and Graphs� content area and mixes them with introductory calculus
concepts from SACE, MT8 introduces di�erentiation of exponential functions
(covered in S2MM1) and logarithms (covered in S2MM4), at the same time as
re-hashing concepts from MS7 and MS8 and revising them (such as sketching
exponential and logarithm functions). Notably, surge models and logistic mod-
els are introduced in MT8 as well. Surge models are not covered anywhere
in the AC or SACE, and logistic models are only introduced in S2SM6 in a
somewhat di�erent context.

• MT9: All the integration is �t into this single topic in MathsTrack, which
students inevitably �nd challenging. This covers essentially all of S2MM3,
and then goes a little further with the notable addition being integration by
substitution, which in SACE is only covered in S2SM5. Notably summation
notation is also introduced (in an appendix) in MT9, an important bit of
notation that students often struggle with in �rst year university.

Overall the �Calculus� content area aligns fairly well between the AC/ SACE and
the bridging courses as it is a major focus of the latter, with only a few notable
excepts (Surge Models, for example). In a number of cases, the bridging courses
actually go beyond SACE Stage 2 Mathematical Methods and cover a substantial
portion of the content of SACE Stage 2 Specialist Mathematics, which could be of
interest if reducing the amount of content in the bridging courses was of interest, as
strictly speaking it is not necessary for the bridging courses to cover SACE Stage 2
Specialist Mathematics content.

Geometry and Linear Algebra

The �Functions and Graphs� and �Calculus� content areas align fairly well between
the AC/ SACE and the bridging courses despite being structured quite di�erently and
overlapping substantially. In contrast, the �Geometry and Linear Algebra� content
area is one where there are substantial di�erences in content between the AC/ SACE
and the bridging courses. This content area is covered across three topics in the
bridging courses: MT2, MT3, and MT4, and so the topic-by-topic key concept level
discussion to follow will be structured around these three MathsTrack topics.

• MT2 covers much of the content in S1M11, although it goes further and also
introduced row operations, a concept not introduced in S1M11 although it is
introduced almost implicitly in S2SM4 when matrices are used to solve 3 × 3
systems of linear equations. This aspect, of solving systems of equations, in
introduced in MT4 and actually gone into in great depth, while the concept
seems tacked on and is not gone into in detail at all in S2SM4.

• MT3 Introduces vectors and vector concepts in both R2 (concepts covered
in S1M9) and R3 (concepts covered in S2SM4). The overlap between S1M9
and MT3 is substantial, with MT3 covering most of the concepts in S1M9,
although S1M9 goes into a little more detail on scalar dot products (a concept
covered in both), and also introduces the concept of orthogonal projection, and
even throws in a dash of geometric styled proof. S2SM4 also goes signi�cantly
further, most notably introducing the concept of the vector cross product which
is not covered in MT3, although both introduce equations for planes in R3.
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• MT4 focuses on systems of linear equations, and although this concept is in-
troduced in S2SM4, it is covered in MT4 in a much more detailed, granular
way. Also, MT4 introduces Gauss-Jordan Elimination, an algorithm not explic-
itly introduced in SACE (although it is implied in the sentence �solve a system
of equations using row operations�).

4.3 Summary

Broadly the content for both �Functions and Graphs� as well as �Calculus� content
areas is well aligned between the bridging courses and the AC/ SACE. Although the
AC and SACE to mix these closely related content areas, particularly for logarithmic
functions, the bridging courses tend to mix the two more, merging the more advanced
concepts from functions and graphs into the calculus topics in a more systematic way.
This makes perfect sense, especially considering how inter-connected the areas are
in the �rst place, and might highlight the inappropriateness of the content area
categorisation more than anything, but it does demonstrate an interesting di�erence
in systematic structuring of concepts between the two.

Broadly, a big di�erence in emphasis between the bridging courses and the AC/
SACE is the emphasis the bridging courses place on sketching graphs, and explicitly
exploring the connection between how transformations (translations and dilations
primarily) of a graph relate to algebraic changes to functions. Although this is
covered in SACE to some degree, it is largely implicit and left to reading between
the lines, while it is quite explicit and fairly systematically embedded in the bridging
courses. Whether this is an advantageous emphasis or not is beyond the scope of
this work, but would make for interesting future research.

Another broad observation is that MathsStart has an implicit focus on practis-
ing foundational skills such as rearranging equations, etc. This seems like a good
approach, and implies another direction of future research going further backwards
into the curriculum and looking at the year 10 and prior AC to identify assumed
knowledge and skills that are important foundational cornerstones for building the
required knowledge in these courses. O�hand, this would likely include concepts such
as fractions, index laws and rearranging equations.

In terms of di�erences in content rather than just structure, bigger di�erences
between the content of the bridging courses and the AC and SACE exist in the other
content areas. With Probability and Statistics being completely omitted from the
bridging courses and Complex Numbers almost completely omitted. As discussed
in Section 4.2.2, the MT5, not currently included in MathsTrack, covered complex
numbers, and as such any attempt to re-incorporate content about complex num-
bers should begin with examining the content in the old MT5 topic. In addition, the
�Complex Numbers� content area has the additional complication of where it �ts into
the SACE curriculum: It is not touched at all in SACE Stage 2 Mathematical Meth-
ods, only SACE Stage 2 Specialist Mathematics, and SACE Stage 1 Mathematics.
As it is in the year 11 SACE Stage 1 Mathematics one might assume that is should
be covered in MathsStart, but this is not entirely accurate. Although MathsStart
includes concepts from high school mathematics up to and including year 11, it is
not intended to be comprehensive, and topics that build required knowledge for only
SACE Stage 2 Specialist Mathematics in particular and not Mathematical Methods
are particularly less important to cover in MathsStart. The decision of to include
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complex numbers in the bridging courses or not is obviously beyond the scope of this
work, here it is simply clari�ed where in the curricula it is touched on, so that that
decision can be made with clarity.

The remainder of this summary will be split into di�erent categories of di�erences
in content that could be useful in terms of re-designing the content of the bridging
course moving forward:

• First the content covered in �Probability and Statistics�, and

• �Complex Numbers� will be summarised, with notes on which SACE subjects
contain which content.

• All other key concepts covered in SACE Stage 2 Specialist Mathematics will be
listed brie�y, separated into concepts currently already covered in the bridging
courses/ not covered in the bridging courses.

• Lastly, and perhaps most importantly, any remaining key concept misalignments
between the SACE curriculum and the bridging courses that do not relate to
SACE Stage 2 Specialist Mathematics will be listed.

4.3.1 Probability and Statistics

The �Probability and Statistics� content area is almost entirely contained in SACE
Stage 2 Mathematical Methods, and the key concepts can be summarised as follows:

• The concept of a random variable is a critical foundational concept for prob-
ability and statistics, and often serves as the abstract object used to de�ne
the di�erence between �Sample� and �Population� thinking, a fundamentally
important di�erence of perspective that can often be confusing. One approach
to introducing the concept of a random variable is to describe it as a type of
object distinct from a number, vector, set, or function. One way to do this
is to frame a random variable as a measurement, that would result in a num-
ber if it were made, but that has not yet been made. Because the process of
measurement involves some �random� process that we cannot perfectly predict,
such as choosing a person from a crowd or rolling a dice, drawing a card from
a deck, or observing if it rains tomorrow, we cannot determine the outcome
beforehand but we can describe all the possible outcomes, and understand that
they might not all be equally likely. This then leads nicely into the concept of
a probability distribution: the probability or �likelihood� of di�erent outcomes
is �distributed� across all the di�erent potential outcomes.

• Discrete Random Variables:

� Uniform distributions,

� Arbitrary distributions,

� The Bernoulli and Binomial Distributions.

• Continuous Random Variables:

� Uniform distributions,

� Arbitrary function (eg. restricted domain polynomial) distributions,
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� The normal distribution.

• Calculating probabilities for all the above,

• Expected Value (E[X] =
∑

i xipi for discrete random variables for which
P (X = xi) = pi and E[X] =

∫∞
−∞ xf(x).dx for a continuous random variable

with probability density function f(x)),

• Variance (var(X) = E [(X − E[X])2]) and Standard Deviation (σ =
√
var(X)),

• The Central Limit Theorem.

• Con�dence Intervals:

� The standard normal (�z-score�) con�dence interval,

� The Wald con�dence interval for a proportion (z-score normal approxi-
mation as per the central limit theorem).

Also important to note that there are some important foundational concepts
covered in SACE Stage 1 Mathematics, speci�cally:

• Calculating mean, median, mode, variance and standard deviation in the sample
rather than the population.

• Combinatorics (Combinations, the Factorial, and Permutations).

Also of note is that the AC goes further than SACE in terms of explicitly intro-
ducing more foundational concepts here, including:

• Extending combinatorics to explicitly discuss binomial coe�cients, Pascals tri-
angle, and the pigeon-hole principle.

• Set-theoretic terminology and notation both in general and applied to prob-
ability calculations: Complement, Intersection and Union of sets, Conditional
Probabilities, Independence of Random Variables, and Disjoint sets.

4.3.2 Complex Numbers

While complex numbers are introduced in two topics in SACE, an introductory topic
in Stage 1 Mathematics and an advanced topic in Stage 2 Specialist Mathematics,
it is interesting to note that in schools in South Australia year 11 students are
often streamed into those planning on taking Stage 2 Specialist Mathematics and
those planning on only taking Stage 2 Mathematical Methods, and often the year
11 students not planning on taking Stage 2 Specialist Mathematics will skip topics
such as Complex Numbers as they do not appear in Stage 2 Mathematical Methods
and instead use the time to focus on the other topics. That said, the key concepts
covered in SACE Stage 1 Mathematics are:

• Rational and Irrational Numbers (covered in MS1),

• Introducing the concept of i =
√
−1, complex numbers as a+ ib.

• Arithmetic (+, −, ×, ÷) using Conjugates for division.
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• Argand Diagram (Complex Plane C).

• Modulus of a complex number.

• Conjugate Roots of Polynomials.

Then these are expended in SACE Stage 2 Specialist Mathematics to also cover:

• Argument and Polar Form, rcis(θ) = r cos(θ) + ri sin(θ) notation.

• de Moivre's Theorem, including negative and fractional indices.

• Geometric properties of the Argand Plane (what happens to complex numbers
when you do arithmetic to them � rotations, translations, dilations).

• Using deMoivre's Theorem to �nd complex roots and factorising polynomials
with complex roots.

4.3.3 SACE Stage 2 Specialist Mathematics Concepts

Key Concepts that are in the Bridging Courses, but are only in SACE
Stage 2 Specialist Mathematics and not any other SACE Subject

These are concepts that could in principle be removed from the bridging courses be-
cause technically, the bridging courses do not need to cover SACE Stage 2 Specialist
Mathematics, only Stage 2 Mathematical Methods as there is a usually an entry level
university course whose purpose is to bridge students who did not complete Stage
2 Specialist Mathematics (at the UofA this course is called �Maths IM�). Important
to note that although technically these could be removed for the reasons discussed
above, often they serve important roles in building understanding and in the pur-
pose, design, and intent of a unit of work and this should be taken into account
when making decisions. This list is intended to provide a starting point for that
consideration, and in some cases a short note on the importance of a concept to
understanding or developing foundational skills will be included. That said, the key
concepts covered only in Stage 2 Specialist Mathematics that could potentially be
cut from the bridging courses on the technicality discussed above are:

• Implicit Di�erentiation, which is currently covered in MT6 and is only
touched on in S2SM6.

• Normal to a Curve, introduced in MT6 and is only brie�y mentioned in
S2SM4 when it is used in the context of vector cross products and equations
for a plane � a very di�erent context. It is not covered explicitly in the way
it is in MT6 anywhere in SACE, but can be a useful tool for understanding
slopes and gradients in the way it is used in MT6.

• Logistic Models from MT8. Note that in S2SM6 logistic models are in-
troduced from the perspective of di�erential equations, quite di�erent to how
they are used in MT8, where it is introduced as a model (an equation), not a
solution to a di�erential equation.
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• Integration by Substitution is covered in MT9 and S2SM5. Note that the
calculus focus of many entry level university mathematics courses means it
might be bene�cial to students to have seen this before when it is covered in
those courses, as it often is a di�cult concept for them when encountering it
for the �rst time.

• Vectors in R3: MT3 covers vector concepts in both R2 and R3, but in SACE
the R2 concepts are covered in Stage 1 Mathematics (S1M9) and the R3

concepts in Stage 2 Specialist Mathematics (S2SM4). To be speci�c, the key
di�erentiating R3 concepts are: vector cross product, and the equation for a
plane.

• Gauss-Jordan Elimination is introduced in MT4 is not anywhere in SACE.
That said, it is implied in S2SM4 in the context of solving 3×3 systems of linear
equations �using row operations�. Note however that basic matrix concepts
(matrix multiplication, the 2 × 2 determinant and inverse) are introduced in
Stage 1 Mathematics (S1M11) however, so some matrix concepts do exist
beyond Stage 2 Specialist Mathematics � the concept that is restricted to
Stage 2 Specialist is the idea of using matrices to solve systems of equations,
speci�cally.

• Sketching Rational Functions (covered in MT7), and some similar ad-
vanced �Function and Graph� concepts in S2SM3 are only covered in Stage 2
Specialist Mathematics, but could also serve as useful ways to build understand-
ing of function behaviour and graphical implications of algebraic manipulation.

Key Concepts that are in SACE Stage 2 Specialist Mathematics but not
in the Bridging Courses

Perhaps less relevant, but for the sake of completeness in this section key concepts
that are covered in SACE Stage 2 Specialist Mathematics that are missing from the
bridging courses are listed. These are likely less relevant because at the present time
the bridging courses are not required to cover the Specialist Mathematics curriculum,
but in the future that may change, and in that eventuality this list may be of use:

• Formal De�nition of a Function, and hence the complement � what is
not a function? Relations. The concept of a relation is in the AC and SACE,
although it is not used much. The only spots where it would be relevant
are restricted to SACE Stage 2 Specialist Mathematics: implicit di�erentiation
(discussed above), parameterised curves, and some advanced function concepts
such as one-to-one discussed below.

• Advanced Function Concepts: domain and range, function composition,
one-to-one, inverse functions, and the absolute value function (covered in
S2SM3) are not covered in the bridging courses, and could be useful.

4.3.4 Other Key Concept Misalignments Between the Bridg-

ing Courses and SACE

In this section, all key concept misalignments between the bridging courses and SACE
that are not already covered in one of the sections above will be listed. So that means
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all concepts that do not align between the Bridging Courses and Stage 1 Mathematics
and Stage 2 Mathematical Methods, except those that relate to the content areas
of �Probability and Statistics� or �Complex Numbers�.

Concepts Covered in SACE but not in the Bridging Courses

These are concepts that are missing from the bridging courses (listed roughly in
decreasing order of importance/ ease of incorporation), and adding them to the
bridging courses should probably be considered:

• Interval Notation (covered in S1M12): MS1 already introduces the concept
of intervals, it would be fairly straightforward to go the one extra step and also
introduce interval notation, and MS1 would be the perfect place.

• Algebraic Rearrangement of Quadratics: The introduction to quadratics
in MS3 is excellent, particularly as the concepts used to introduce them (dila-
tions, translation) are very applicable in the AC and SACE and in introducing
many concepts in later topics. However because of how concepts around Poly-
nomials are split between MS3 and MT1, the speci�c key concept relating to
rearranging quadratics algebraically to get them in vertex form and factored
form is missed almost halfway between MS3 and MT1. Although these forms
are introduced implicitly in MS3 and interpreted, algebraic rearrangement of
them could be emphasised more (to better align with S1M2, for example).
Adding this to MS3 would also re-enforce the emphasise early in MathsStart
on building the foundational skill of rearranging equations, which would serve
students well in later topics as well.

• Orthogonal Projection: Scalar dot product of vectors is introduced in MT3,
but SACE goes a little further, also introducing the concept of orthogonal
projection in R2 in S1M9.

• Translations and Dilations of Trigonometric Functions: In MS3 di-
lations and translations of quadratic functions are considered. It would be
useful if these concepts where re-visited in MS6 when looking at graphing/
sketching trigonometric functions, as this is covered in SACE explicitly and
also because it connects the concept through multiple di�erent topics and ap-
plications (di�erent kinds of functions). This is a concept that is emphasised
early in MathsStart and that could be leveraged more by bringing it into each
new type of function as they are introduced, with the added bene�t that this
would also improve the content-alignment to SACE and the AC.

• Geometric Sequences and Recurrence Relations: Both the AC and SACE
introduce the concept of exponential functions via recurrence relations describ-
ing them with geometric sequences. Although this is certainly not the only (or
even necessarily the best) way to introduce and understand exponential func-
tions, it is the way prescribed by the AC and SACE curricula, so it might be
valuable particularly in avoiding a di�erence in thinking between students com-
ing out of the bridging courses and those coming straight out of high school,
if that is of concern.
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Concepts Covered in the Bridging Courses but not in SACE

There is only one key concept that is left: Surge Models are not included in either
the AC or SACE, and could potentially be removed from MT8 entirely without im-
pacting on the content alignment of the bridging courses to the high school curricula.
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Chapter 5

Recommendations

The importance of bridging courses as what is often student's �rst experience at uni-
versity means that the bridging courses have a substantial opportunity to impact on
both students well-being and retention. The fact that the demographic of students
enrolling in these courses represents a slice of our population that is typically less
advantaged than average also helps to emphasise the importance of these bridging
courses from the perspective of social equity (Lee et al., 2008). The broader social is-
sue of maths anxiety and maths-phobia is also beginning to impact on the Australian
economy and will continue to do so at an increasing rate as our economy continues
to rely more and more on industries that require maths-competence (King & Cattlin,
2015; Gordon & Nicholas, 2013b). The demographic of students enrolling in the
bridging courses over-representing maths-anxiety means that such bridging courses
are one of the key places to tackle the broad social issue of negative maths a�ect.
Obviously addressing this issue at earlier stages is also critical, but a multi-pronged
approach is important to capturing multiple generations of students simultaneously
and hence sparking a broader perspective shift in the general population. In this �nal
chapter, recommendations for improvements that could be made to the mathematics
bridging courses run through the MLC at the UofA. Throughout this work, recom-
mendations have been largely split into content alignment recommendations based
on document analysis of the Australian high school curricula (see Section 4.3) and
non-content recommendations based on the academic literature (see Section 3.6).
More detailed discussion of the context and speci�cs of each recommendation is in-
cluded in Sections 3.6 and 4.3, but in this chapter the most salient recommendations
are summarised, and the ways in which these two avenues of research interact and
the importance of considering both simultaneously is emphasised. Throughout the
discussion of these recommendations, there are two things that should be kept in
mind to contextualise the perspective from which these recommendations are made:

• First, allocation of resources (funding, human resources, etc.) is beyond the
scope of this work. So although there are many recommendations that could
be made that involve the allocation of additional resources to improvement of
the bridging courses, in�uencing the allocation of resources is not a goal of this
work, and so any recommendations that would require substantial additional
resources to implement will be deemphasised, but not omitted entirely, from
the discussion.

• As implied by the framework introduced in Section 1.2 and much of the lit-
erature discussed in Chapter 3, in order to achieve positive outcomes for the
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students it is critical to simultaneously consider both improvements to their
mathematical ability/ performance/ skills (i.e. content knowledge), and their
a�ect towards maths � i.e. directly addressing issues such as maths anxiety,
poor maths self-e�cacy, etc.

Content Alignment to high school Curriculum

In line with the second point above, although content changes are listed in Section 4.3
that could be made to bring the bridging courses more closely into alignment with the
high school curricula, it would be inadvisable to make all or even a substantial number
of these changes at once. Instead, it is important to evaluate changes to content
in terms of the learning experience associated to them. The interconnectedness
of learning experience, as represented in Figure 1.2, cannot be understated, and is
crucial to achieve positive outcomes. If students are having a negative a�ect reaction
to a change in content this is critical to identify early and address either directly (by
some direct intervention as discussed in Section 3.6, i.e. a reappraisal approach to
adjusting students into a �productive struggle� mindset for example), or by changing
the pedagogical approach to how the content is taught, by modifying the structure
and order in which the content is taught, or even changing the content taught to
result in a better a�ective reaction from students. One of the common points agreed
upon broadly by the literature is that although students a�ect towards maths impacts
on their performance and learning strongly, it is also possible to change students
a�ect towards maths, and that doing so is critical to their success particularly in
a bridging course context. Although the relationship between success and a�ect is
not necessarily straightforward (Jansen et al., 2013), introducing content in a way
that causes students to experience failure has the potential to be catastrophic if not
handled carefully (i.e. in an environment which has already strongly re-enforced a
�productive struggle mindset for example), and so adjustments to content should be
made with care and with student's a�ect foremost in mind.

Self-Paced and Feedback-Focused Assessment

The self-paced and feedback focused approach to assessment is certainly one of the
highlights of MathsTrack as it is currently run. Although test anxiety has been de-
lineated from maths anxiety (Kazelskis et al., 2000), they are none-the-less strongly
correlated and the e�ect on reducing test anxiety of the self-pacing of MathsTrack
should not be understated. That said, this feedback-focussed approach to assess-
ment, which is widely considered best practice in the teaching profession, is also
resource (time) expensive, relating to the �rst point discussed above (funding restric-
tions). It would be ideal to be able to expand on this feedback and support capacity
in the bridging courses, but this would inevitably require additional resources.

Encouraging Social Support Network Development

One recommendation coming from the literature that would not require substantial
resources however, and would address two of the points raised in Section 3.6, is to
incorporate a �xed day/time for bridging courses to come and get help at the MLC
drop-in centre (or to book a seperate room for them). Providing tutors speci�cally
would obviously be a question of resources, but would not necessarily even be entirely
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necessary. One of the primary advantages of having a �xed day/time for the bridging
courses to come to a speci�c place, is that they would be more likely to meet
each other, to make friends, to build social support networks that will help them
through the bridging courses but also continuing beyond to their further studies.
The importance of developing such a social support network, and the potential role
of bridging courses in facilitating this, has been discussed widely in the literature
(Trotter & Roberts, 2006; Peat et al., 2001; Leese, 2010; Gordon & Nicholas, 2013b)
and is strongly supported by the �rite-of-passage� model of Clark and Lovric (2008).
If this was organised to be part of the MLC drop-in services, then this would also
be an opportunity to further expose the bridging course students to the �learning-
to-learn� emphasis that is already an integral part of the MLC drop-in centre, and
has been shown to be e�ective in the context of bridging courses (Zeegers & Martin,
2001).

Di�erentiation of Content for Student Trajectory

Given the diversity of the student cohort entering the bridging courses as discussed
in Section 1.1, and in particular the variety in their future directions di�erentiating
the content of the bridging courses to tailor to these di�erent trajectories could be
of interest. Unfortunately, depending on how this di�erentiation is implemented, it
could potentially be associated to a substantial requirement for additional resources,
but with the �ipped-learning model already incorporated into much of the bridging
courses structure perhaps this cost could be mitigated somewhat. Speci�cally, the
simplest partitioning of content to accommodate the di�erent trajectories seems to
be to split the content into three broad areas:

• Foundational Concepts such as rearranging equations, polynomials (quadrat-
ics mostly), index laws and fractions are important for establishing a good
knowledge-base and also would be an ideal place to incorporate the �learning-
to-learn� emphasis from the MLC drop-in centre as recommended by Zeegers
and Martin (2001).

• Calculus focused maths, di�erentiation, integration, and understanding of
functions and graphs are fundamental to the students aiming to study in ECMS
at the University of Adelaide or more broadly for students aiming to continue
into entry level mathematics and engineering courses as these are traditionally
(and ubiquitously) very calculus-focused, and this calculus-emphasis is carried
through both engineering and mathematics degrees.

• Probability and Statistics concepts on the other hand, which would need
to be added to MathsTrack as discussed in Section 4.3, are an increasingly
important focus in the sciences, particularly the biological and health sciences
degrees in which students have historically been found to struggle with the
mathematical (largely statistical) requirements of their degrees (Tariq, 2002).

It makes sense for the foundational concepts to be covered in MathsStart as this
was always the intention of the course. MathsTrack in the meantime is entirely
focussed on Calculus, so one approach might be to gradually introduce Probability
and Statistics topics into MathsTrack, and potentially o�er them as alternatives to
some of the Calculus topics for students planning on studying degrees which do
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Fundamentals

Advanced Calculus

Probability and Statistics

Figure 5.1: Ideal High-Level Content Structure for the University of Adelaide Bridging
Courses

not need Calculus (see Figure 5.1), but have a statistics focus (such as health and
biological science or medical degrees).

5.1 Further Research

During the course of this work, a number of additional research directions have been
raised that have fallen beyond the scope of this work to pursue. The following are a
list of these potential future research directions:

• A more comprehensive systematic review of the literature surrounding mathe-
matics bridging and the secondary-tertiary transition.

• A review of all Australian universities, bridging courses they o�er, and placing
the UofA courses into that context. Some work on this was begun, and a list
of universities and bridging courses was compiled but was not included in this
document. Contact the author for details.

• Writing a probability and statistics topic booklet to be used as part of the
MathsTrack course. Some work on harmonising the formatting of the Math-
sTrack booklets has been done but is not included in this document. Contact
either the author, or the MLC at the UofA for details.

• Alignment of �nal year high school curriculum content across the other states
of Australia in comparison to the AC, and internationally.

• Developing a measure of the �granularity� of a curriculum in terms of how
much content is grouped into each topic, and investigating the e�ect of this
granularity on learning.

• Relating to the �granularity� concept above, investigating which concepts are
taught separately and which are taught together and comparing these group-
ings into content areas between curricula could lead to insights on impact on
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learning. This could then potentially be extended and links be made to edu-
cational research into STEM where traditionally separate subjects are taught
together.

• Extending the curriculum mapping further back to include more foundational
knowledge and assumed skills by including the the year 10 curriculum and prior
and linking key concept dependencies between year levels.

• One key di�erence in emphasis between the bridging courses and the AC/ SACE
identi�ed in Chapter 4 is the emphasis the bridging courses place on sketching
graphs, and explicitly exploring the connection between how transformations
(translations and dilations primarily) of a graph relate to algebraic changes to
those functions. An interesting line of research would be to investigate the
impact of this emphasis on learning.

• Review the old MT5, and map complex number concepts to the AC and
SACE to bring it into alignment with the high school curricula in case it is
re-introduced into MathsTrack.

• Long-term e�ects of maths anxiety interventions.
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Appendix A

Key-Concept Level Description

of Topics

Note, topics are identi�ed using the code notation introduced in Table 4.1. The full
topic name is given in bold where applicable, and then key concepts covered
in that topic are listed.

Code Name and Key Concepts

MMu1t1 Functions and graphs: Midpoint of a Line, y = mx + c, Quadratic
Equations in Vertex and Factorised Forms, Inverse Proportions, Polyno-
mials, Relations, Translations and Dilations

MMu1t2 Trigonometric functions: Unit Circle, Radians, SOH CAH TOA, Sine
Rule, Cosine Rule, Exact Values, Amplitude/ Period/ Phase, Length of
Arc, Area of Sector

MMu1t3 Counting and probability: Binomial Coe�cients, Set Complement
Intersection and Union, Probability, P (A∪B) = P (A)+P (B)−P (A∩
B), Conditional Probability, Independance

MMu2t1 Exponential functions: Index Laws, Fractional Indices, Functions,
Asymptotes, Graphs

MMu2t2 Arithmetic and geometric sequences and series: Arithmetic and
Geometric Sequences as Recurrence Relations, Limiting Behaviour, and
Partial Sum Formulae, Growth and Decay

MMu2t3 Introduction to di�erential calculus Average Rate of Change, First
Principles, Leibniz Notation, Instantaneous Rate of Change, Slope of
Tangent, Derivitive of Polynomials, Linearity of Di�erentiation, Sta-
tionary Points, Optimisation, Anti-Derivitives, Interpret Position-Time
Graphs

MMu3t1 Further di�erentiation and applications: De�ne e as a s.t.
limh→0

ah−1
h

= 1, Derivitives of ex sin(x) and cos(x), Chain Product
and Quotient Rules, Second Derivitives

MMu3t2 Integrals: Integrate Polynomial Exponential and Trigonometric Func-
tions, Linearity of Integration, Determine Displacement given Velocity,
De�nite Integrals, Fundamental Theorem of Calculus, (signed) Area Un-
der a Curve
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Code Name and Key Concepts

MMu3t3 Discrete random variables: Frequencies, General Properties, Ex-
pected Value, Variance, Standard Deviation, Bernoulli and Binomial
Distribtions

MMu4t1 The logarithmic function: Logs as Inverse of Exponentials, Log-
Scales, Log Laws, Log Function Graphs, Natural Log, d

dx
ln(x) = 1

x
,∫

1
x
dx = ln(x) + c for x > 0

MMu4t2 Continuous random variables and the normal distribution: Prob-
ability Density Function, Cumulative Distribution Function, Probabilites
Expected Value, Variance and Standard Deviation as Integrals, Linear
Transformation of Random Variables, Normal Distribution using Tech-
nology

MMu4t3 Interval estimates for proportions Simple Random Sampling, Bias,
Sample Proportion, Normal Approximation to the Binomial Proportion,
Wald Con�dence Interval, Trade-O� Between Width and Level of Con-
�dence

SMu1t1 Combinatorics Multiplication of Possibilities, Factorial Notation, Per-
mutations with and without Repeated Objects, Union of Three Sets,
Pigeon-Hole Principle, Combinations, Pascals Triangle

SMu1t2 Vectors in the plane: Magnetude and Direction, Scalar Multiplica-
tion, Addition and Substraction as a Triangle, Vector Notation, ai + bj
Notation, Scalar Dot Product, Projection, Parallel and Perpendicular
Vectors

SMu1t3 Geometry: Notation for Implication (⇒) and Equivalence (⇔), Con-
verse (B ⇒ A) Negation (¬A⇒ ¬B) and Contrapositive (¬B ⇒ ¬A),
Proof by Contradiction, ∀ and ∃ Notation, Counter-Examples, Circle
Theorems, Quadrilateral Proofs in R2

SMu2t1 Trigonometry: Graph and Solve Trig Functions, Prove Various Trig
Indentities, Reciprocal Trig Functions

SMu2t2 Matrices: Notation, Addition and Scalar Multiplication of Matrices,
Multiplicative Identity and Inverse, Determinant, Matrices as Transfor-
mations

SMu2t3 Real and complex numbers: Rationality and Irrationality, Induc-
tion, i =

√
−1, Complex Numbers a + bi and Arithmetic (+, −, ×,

÷), Complex Conjugates, Complex Plane, Complex Conjugate Roots of
Polynomials

SMu3t1 Complex numbers: Modulus and Argument, Arithmetic (×, ÷, and
zn) in Polar Form, Convert between Polar and Cartesian Form, De
Moivre's Theorem, Roots of Complex Numbers, Factorising Polynomials

SMu3t2 Functions and sketching graphs: Composition of Functions, One-
to-One, Inverse Functions, Absolute Value Function, Rational Functions

SMu3t3 Vectors in three dimensions: ai + bj + ck Notation, Equation for
Spheres, Parameterised Vector Equations, Equations of Lines, the Cross
Product, Equation for a Plane, Systems of Linear Equation (Elimina-
tion Method) and Geometric Interpretation of Solutions, Kinematics via
Di�erentiation of Vector Equations, Projectile and Circular Motion
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Code Name and Key Concepts

SMu4t1 Integration and applications of integration Substitution,
∫

1
x
dx =

ln |x|+c for x 6= 0, Inverse Trig Functions and their Derivitives, Integrate
±1√
a2−x2 and a

a2+x2
, Partial Fractions, Integration by Parts, Area Between

Two Curves, Volume of Solids of Revolution, Numerical Integration using
Technology

SMu4t2 Rates of change and di�erential equations: Implicit Di�erentia-
tion, First-Order Seperable Di�erential Equations, The Logistic Equa-
tion, Kinematics (Rates of Change)

SMu4t3 Statistical inference: Central Limit Theorem and the Resulting Con-
�dence Interval for a Mean

S1M1 Functions and graphs: Equations for a Line, Slope, y-intercept, In-
tersection of Lines, Reciprocal Function, Asymptotes, Functions vs Re-
lations, Domain, Range, Function Notation

S1M2 Polynomials: Quadratic Equations in Vertex and Factorised Forms,
Quadratic Formula, Completing the Square, The Leading Coe�cient
and Degree of a Polynomials, Cubics, Quartics

S1M3 Trigonometry: Pythagoras, SOH CAH TOA, Cosine Rule, Sine Rule,
Unit Circle, Exact Values, Sine and Cosine Functions, Radians, Length
of Arc, Area of Sector, Amplitude, Period, Phase, tan(x) = sin(x)

cos(x)

S1M4 Counting and statistics: Factorial, Permutations, Multiplication Prin-
ciple, Combinations, Discrete vs Continuous Random Variables, Mean,
Median, Mode, Range, Interquartile Range, Standard Deviation, Normal
Distribution,

S1M5 Growth and decay: Index and Logarithm Laws, Exponential Functions
and their Graphs

S1M6 Introduction to di�erential calculus: Average Rate of Change, First
Principles, Notation f ′(x) = df

dx
, d
dx
xn = nxn−1, Linearity of Di�eren-

tiation, Slope of Tangent, Increasing vs Decreasing, Local and Global
Maxima and Minima, Stationary Points, Sign Diagram

S1M7 Arithmetic and geometric sequences and series: Arithmetic and
Geometric Series as Recurrance Relations and Explicit Expressions, Par-
tial Sums, Limiting Behaviour

S1M8 Geometry: Circle Properties, Proofs (Direct, Contradiction, and Con-
trapositive)

S1M9 Vectors in the plane: Component (column) vs ai + bj Notation,
Length and Direction, Linear Combinations of Vectors, Scalar Dot Prod-
uct, Projection, Angle Between Two Vectors and Parallel/ Perpendicular,
Geometric Proof

S1M10 Further Trigonometry: Sketch Trigonometric Functions with Trans-
lations and Dilations, Solve for Angles, Trigonometric Identities, Recip-
rocal Trigonometric Functions

S1M11 Matrices: Linear Combinations of Matrices, Matrix Multiplication, The
Identity, Inverse Matrices, The 2×2 Inverse, The 2×2 Determinant, Lin-
ear Transformations (including rotations, re�ections and composition)
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Code Name and Key Concepts

S1M12 Real and complex numbers: Rationals, Irrationals, Interval Nota-
tion, Induction, i =

√
−1, Real and Imaginary Components, Complex

Conjugates and Arithmetic, Argand Diagram, Modulus, Complex Roots
of Polynomals

S2MM1 Further di�erentiation and applications: S1M6, Chain Product
and Quotient Rules, e = 2.718 . . ., d

dx
ex = ex, d

dx
sin(x) = cos(x),

d
dx

cos(x) = − sin(x), Second Derivatives, Concavity and Points of In-
�ection

S2MM2 Discrete random variables: Random Variables, Discrete vs Contin-
uous, Probability Functions and Distributions, Properties of Probabil-
ities, Frequency, Expected Value E[X] =

∑
xp(x) = µX , Standard

Deviation σX =
√∑

(x− µX)2p(x), Uniform Bernoulli and Binomial
Distributions

S2MM3 Integral calculus: Anti-di�erentiation, Reversing Chain Rule for∫
f(ax+ b)dx, Linearity of Integration, Finding the Constant of Integra-

tion, Area Under the Curve as Upper and Lower Sum Approximations,
De�nite Integral, Area Between Two Functions and Between a Negative
Function and the x-axis, Fundamental Theorem of Calculus,

S2MM4 Logarithmic functions: Logs as Inverse of Exponentials, Log-Scales,
Log Laws, Sketching y = a ln(b(x − c)), d

dx
ln(x) = 1

x
, For x > 0∫

1
x
dx = ln(x) + c

S2MM5 Continuous random variables and the normal distribution:
P (X = x) = 0, Probability Density Function, µX =

∫∞
−∞ xf(x)dx,

σX =
∫∞
−∞ (x− µX)2f(x)dx, f(x) = 1

σ
√
2π
e−

1
2(x−µσ )

2

, Standard Normal

Z = X−µ
σ

, Simple Random Sampling, For X ∼ (µ, σ) and Xi ∼ iidX
Sampling Distributions of Sn = Σn

i=1Xi (nµ, σ
√
n) and X̄n = Sn

n

(µ, σ√
n
), If X is Normally Distributed, then so are Sn and X̄n, Cen-

tral Limit Theorem (CLT)
S2MM6 Sampling and con�dence intervals: Con�dence Interval for a Mean

using CLT
(
x̄− z∗ s√

n

)
≤ µ ≤

(
x̄+ z∗ s√

n

)
, Wald Interval for a Pro-

portion

S2SM1 Mathematical induction: Initial Case and Induction Step
S2SM2 Complex numbers: Cartesian vs Polar Form, Real and Imaginary Com-

ponents, Modulus and Argument, Arithmetic in both Cartesian and Polar
Forms, de Moivre's Theorem including Negative and Fractional Pow-
ers, Geometric Properties of the Argand Plane, Complex Arithmetic as
Transformations, nth Roots of a Complex Number, Factorising Polyno-
mials with Complex Roots

S2SM3 Functions and sketching graphs: Function Composition, Informal
Intro to Domain and Range, One-to-One, Inverse Functions, Absolute
Value Function, Graphing Rational Functions
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Code Name and Key Concepts

S2SM4 Vectors in three dimensions: Notation, Equations of a Line in R3,
Scalar Dot Product, Vector Cross Product, |a× b| is the Area of their
Parallelogram, Equation for a Plane in R3, Systems of Linear Equations,
Geometric Interpretation of No/Unique/In�nite Solutions to a System
of Linear Equations in R3

S2SM5 Integration techniques and applications: Integration by Substitu-
tion, Using Trigonometric Identities for Integration, Derivatives of In-
verse Trigonometric Functions (so

∫ ±1√
a2−x2dx and

∫
a

a2+x2
dx, Integra-

tion by Parts, Partial Fractions for Integrating Rational Functions, Area
Between two Curves, Volume of Solids of Revolution

S2SM6 Rates of change and di�erential equations: Implicit Di�erentia-
tion, First-Order Seperable Di�erential Equations, The Logistic Di�er-
ential Equation, Parameterised Curves, Example: if v = d

dt
(x(t), y(t))

is Velocity, |v| is Speed, and so the Arc Length along the Parameterised
Curve is

∫ b
a

√
v • vdt, Trigonometric Parameterisations (unit circle, and

non-circular parameterisations)

MS1 Numbers & Functions: Natural Numbers, Integers, Rational Num-
bers, Real Numbers, Functions, Intervals

MS2 Linear Functions: Equation for Linear Functions, Simultaneous Linear
Equations, Sketching Linear Inequalities

MS3 Quadratic Functions: Sketching a Parabola, General Form of a
Quadratic, Translations and Dilations

MS4 Rational Functions: Sketching Reciprocal Functions (Hyperbola),
Lines of Symmetry, Limits and Asymptotes

MS5 Trigonometry I: Pythagoras, Similar Triangles, SOH CAH TOA,
Trigonometric and Inverse Trigonometric Functions using Technology,
Exact Values

MS6 Trigonometry II: Unit Circle, Sketching Trigonometric Functions,
Finding all Solutions to Trigonometric Equations, The Sine Rule, The
Cosine Rule, Introductory Trigonometric Identities, Radians

MS7 Exponential Functions: Index Laws, Sketching Exponential Func-
tions, e = 2.718 . . ., Growth and Decay

MS8 Logarithms: Natural Logarithm, Logarithm Laws, Using Logarithm to
Fit Growth/Decay Functions, Half-Life/ Doubling Time

MT1 Polynomials: Polynomial Division and �Remainder Theorem�, Factor
Theorem Linking Zeros to Factors, Continuous vs Discontinuous Func-
tions, Smoothness, Sketching Factorised Form of Polynomials, Factoris-
ing Polynomials, The Quadratic Formula

MT2 Matrices: Order, Notation, Linear Combinations of Matrices, Matrix
Multiplication (Associative but not Commutative, Distributes across Lin-
ear Combinations), The Identity Matrix, Powers of Square Matrices,
Matrix Transpose, Systems of Linear Equations, Matrix Inverse, 2 × 2
determinant, The 2× 2 Inverse, n× n Inverses, Elementary Row Oper-
ations,
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MT3 Vectors and Applications: Directed Line Segment Notation for Vec-
tors, Magnetude/ Length and Direction, Linear Combinations of Vec-
tors, Component and ai + bj Notation, Vectors in R2 and R3, Scalar
Dot Product, Equation for a Plane in R3

MT4 Systems of Linear Equations: Augmented Matrix for Systems of
Linear Equations, Elementary Row Operations, Row-Echelon Form, So-
lutions to Systems of Linear Equations and Geometric Interpretations in
R2 and R3, Matrix Inverses by Gauss-Jordan Elimination

MT6 Di�erentiation: Rates of Change, Gradient, First Principles, Limit
Notation, Derivative Notation, d

dx
xn = nxn−1 (including n = 0 and

n = 1), Linearity of Di�erentiation, Product Rule, Quotient Rule, Chain
Rule, Implicit Di�erentiation, Normal to a Curve

MT7 Applications of Di�erentiation: Sketching Polynomials and Ratio-
nal Functions (Intercepts and Asymptotes), Continuity, Sign Diagrams,
Increasing and Decreasing, Stationary Points, Points of In�ection, Con-
cavity, Optimisation,

MT8 Exponential and Logarithm Functions: Sketching Exponential
Functions, e = 2.718 . . ., d

dx
ex = ex, Natural Logarithm, d

dx
ln(x) = 1

x
,

Growth and Decay, Surge Models, Logistic Models
MT9 Integration: Area Under a Curve, Lower and Upper Sums, De�nite

Integrals, De�nite Integrals of Negative Functions, Linearity of Integra-
tion, Properties of De�nite Integrals, Fundamental Theorem of Calculus,
Antiderivatives, Inde�nite Integrals, Integrating by Reversing the Chain
Rule, Integration by Substitution, Area Between two Curves, Summation
Notation (Appendix)
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