Name:

Stage 1 - General Maths Networks Test

Question 1

By considering the networks above, complete the table below.

Network	Number	Number	Connected	Weighted	Contains
	of Nodes	of Edges	Network	Network	a Circuit
			(Yes or No)	(Yes or No)	(Yes or No)
A					
В					
С					
D					
E					
F					
G					

Question 2

(a) What is represented by the nodes in the networks above?

(b) What is represented by the edges in the networks above?

	(c) Apply both Prim's and Kruskal's algorithms in order to find a minimum anning tree and highlight the edges in this minimum spanning tree in the twork diagram above.
110	twork diagram above.
of	(d) Describe the difference between Prim's and Kruskal's algorithm in terms the steps you follow to arrive at a minimum spanning tree.

Question 3

(a) Use Dijkstra's Algorithm to find the shortest path from A to F in the network shown. Make sure to annotate and box each node appropriately, and neatly cross out labels as needed. Then, write the shortest path here in the form $A \to \ldots \to F$.

(b) What is the length of the shortest path you found in (a)?

(c) Find the **longest path** (that does not go through any node more than once) from A to F in the network above. Write the longest path in the form A $\rightarrow \ldots \rightarrow \ldots \rightarrow F$.

(d) What is the length of the longest path you found in (c)?