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Abstract

Proteomic imaging mass spectrometry is an emerging field, and produces large
amounts of high-dimensional data. We propose approaches to extracting useful in-
formation from these data — two of particular note. The Difference in Proportions of
Occurrence Statistic (DIPPS) applies to binary data and leads to easily interpretable
maps useful for exploratory analyses and automated generation of feature lists that
can be used to standardise comparisons between datasets. The second approach,
based on Canonical Correlation Analysis (CCA), reduces the high-dimensional data
to features strongly related to classes and leads to good classification. Applications
to cancer data show the success of these approaches.
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Introduction

It should be emphasised that although this project is primarily based in the discipline
of statistics, or perhaps more accurately bioinformatics, a large component of the
work is cross-disciplinary with proteomics, and as such I aspire to represent both
aspects to some degree. Proteomics is a rapidly growing area which deals with
the identification and characterisation of proteins, most commonly by a so-called
‘bottom-up’ approach that uses peptides resulting from proteolytic cleavage of the
proteins with an enzyme. There are also ‘top-down’ proteomics approaches that
use intact proteins, but I will exclusively consider bottom-up approaches. Many
different proteomics methods include Mass Spectrometry (MS) based identification
steps. Chapter 1 includes a brief introduction to some of these methods. The focus
of this thesis is on one particular, relatively new, application of MS called Matrix
Assisted Laser Desorption Ionisation (MALDI)-Mass Spectrometry Imaging (MSI).
In contrast to many other more established methods in proteomics, MALDI-MSI
has not yet attracted as much attention in the statistics/ bioinformatics literature,
although some approaches to the analysis of MALDI-MSI data have been covered
in proteomics/ mass spectrometry journals — see Norris et al. (2007); Jones et al.
(2012); Gessel et al. (2014); Stone et al. (2012); Alexandrov et al. (2010); Alexandrov
and Kobarg (2011); Alexandrov et al. (2013) and references therein. MALDI-MSI
can produce large datasets with complicated structure and as such requires the
development of novel statistical tools in order to analyse and interpret. The goal of
this work is to develop methods that can help in the analysis and interpretation of
MALDI-MSI data.

There are two strengths of MALDI-MSI that we will focus on, and these two foci
split the work in this thesis into two parts:

• MALDI-MSI can preserve spatial information in the data that would otherwise
be lost. Taking advantage of this spatial information is the focus of Chapters 2
and 3, where we introduce clustering as an approach to separate spatially
distinct regions in an automated fashion. We then also suggest the Difference
in Proportions of Occurrence Statistic (DIPPS) which we use in a feature
extraction approach to characterising the regions separated by clustering. This
DIPPS-feature extraction provides a quick and easy way to identify potentially
interesting targets for follow-up experiments. Such an automated approach to
identifying targets is useful as the standard approach is to manually consider
each feature and this can be time consuming and even biased, particularly
when considering multiple large MALDI-MSI datasets.

• Data can be collected from large cohorts of patients through the use of Tis-
sue Microarrays (TMAs) combined with MALDI-MSI. Having access to data
from many patients allows for classification problems of diagnostic relevance
to be addressed. Taking advantage of the ability to collect data from large
patient cohorts is the focus of Chapters 4 and 5, where we consider different
approaches to the classification of MALDI-MSI data from TMAs. One of the
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more promising approaches we discuss is that of Canonical Correlation Analy-
sis (CCA)-based variable selection, which not only seems to perform well in the
classification context, but as a by-product also identifies key peptides which
can be further investigated in follow-up biomarker validation studies.

In each of these two parts, we first introduce and discuss methods (in Chapters 2
and 4 respectively), and then demonstrate the use of these methods on real data in
more detail and discuss the biological relevance of the results (in Chapters 3 and 5
respectively).

The research carried out for this thesis has been published in four papers. Two
papers, Winderbaum et al. (2015) and Winderbaum et al. (2016), are method-
focused publications and correspond to the two foci above. The discussion in Chap-
ters 2 and 3 overlap with the ideas of Winderbaum et al. (2015) and explores these
ideas in more detail. Similarly, the main conclusions of the discussion in Chapters 4
and 5 are summarised in Winderbaum et al. (2016). The other two papers, Gustafs-
son et al. (2015) and Mittal et al. (2016), are application-focused and correspond to
the glycan and endometrial cancer applications introduced in Sections 1.5.3 and 1.5.2
respectively. Application-specific results are presented in Section 3.2.2 and Chap-
ter 5, overlapping with results discussed in each of these two application-focused
papers. I have also presented the work, now published as Winderbaum et al. (2015)
at several conferences, specifically giving a talk at the Statistical Society of Aus-
tralia Inc. Young Statisticians Conference in 2013, a talk as an invited speaker to
the Statistical Society of Australia Inc. Australian Statistical Conference in 2014,
and presenting a poster at the Australasian Proteomics Society Annual Lorne Pro-
teomics Symposium in 2015.

We have access to several high quality applications of MALDI-MSI data through
our collaborative work with the Adelaide Proteomics Centre (APC)1. Our collabo-
ration with the APC on several of these applications has also produced a number of
tangential publications of which I am not the main author — including Gustafsson
et al. (2015) and Mittal et al. (2016). In total we consider three such applications
of MALDI-MSI in this thesis:

• Ovarian Cancer — We consider approaches to the exploratory analyses of
MALDI-MSI data in depth, and make extensive use of the ovarian cancer data
of Gustafsson (2012) to illustrate these methods. In Chapter 2 we demonstrate
the separation of cancerous tumour tissue from its surrounding non-tumour
tissues by using an automated clustering approach. We then suggest a DIPPS-
feature selection scheme for selecting a short-list of peptides that are more
highly expressed in tumour tissue than non-tumour tissue. We published this
DIPPS-feature selection approach as Winderbaum et al. (2015). In Section 3.1
we consider the results of applying this combined feature extraction approach
to many sections from the same and different patients, and comparing the
results to explore within and between patient variability in MALDI-MSI data.

• Murine Glycans — It would be of interest to detect glycans with MALDI-MSI,
rather than just peptides and proteins. In Section 3.2 we demonstrate that
the DIPPS-based feature extraction step developed with the ovarian cancer
data in mind can also be used to quickly and easily produce a short-list of

1 http://www.adelaide.edu.au/mbs/proteomics/

Level 1, Molecular Life Sciences
The University of Adelaide
SA 5005 Australia
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potential glycans for validation in the MALDI-MSI data. This experiment
successfully demonstrated that glycans can in fact be detected using MALDI-
MSI (Gustafsson et al., 2015), and this opens up new applications in cancer
research.

• Endometrial Cancer — Taking advantage of the second strength of MALDI-
MSI noted above, Mittal et al. (2016) collected data from the primary tumours
of a cohort of endometrial cancer patients using two TMAs. If it is possible
to predict these patients’ Lymph Node Metastasis (LNM) status from these
primary tumour data, this would give the surgeon a diagnostic tool to decide if
the lymph nodes need to be removed. Removing the lymph nodes is associated
with serious complications for the patient, and LNM is highly relevant to
survival and treatment, so this decision is important for producing positive
patient outcomes.

We introduce some classification and variable reduction methods, as well as
our novel approach to pre-processing and normalisation of these data in Chap-
ter 4. In Chapter 5 we consider the results of applying these methods to the
endometrial cancer MALDI-MSI data, concluding that LNM can be predicted
from these data to a significant degree, and therefore warranting further stud-
ies applying this method as a diagnostic tool for LNM status in the clinic.
We published these results and our approach to this classification problem as
Winderbaum et al. (2016).

Each of these applications of MALDI-MSI are introduced in more detail in Sec-
tion 1.5. Note that throughout this thesis we introduce many established ideas from
a number of fields, including proteomics, mass spectrometry, and statistics. Where
possible we include specific references to these ideas, but some of the ideas we dis-
cuss are commonly known in a particular field. For any such background knowledge
without a specific reference included, please see Lovric (2011) for proteomics and
mass spectrometry background, Koch (2013) for multivariate statistics, or Casella
and Berger (2001) for statistics more generally.

It should also be noted that a significant proportion of the work that went into
this project involved writing software tools to handle large MALDI-MSI datasets.
Although not explicitly discussed in this thesis, all associated code is available from
GitHub2, or at request from the author3.

2 URL: https://github.com/armadilloa16
3 email: lyron.winderbaum@student.adelaide.edu.au
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Chapter 1

Background and Data

In order to be self-contained in terms of required proteomics background knowledge,
we begin with a short introduction to the broad concepts of proteomics (Section 1.1)
and Mass Spectrometry (MS) (Section 1.2). In Section 1.3 we introduce some more
specific proteomics topics that will be relevant to our context. We then discuss the
technique that is the main focus of this project, Matrix Assisted Laser Desorption
Ionisation (MALDI)-Mass Spectrometry Imaging (MSI), in Section 1.4. Finally, in
Section 1.5 we introduce data sourced from three different applications of MALDI-
MSI — the study of: peptides from ovarian cancer tumours embedded in surrounding
healthy tissues, glycans from murine kidney tissue, and peptides from endometrial
and vulvar cancer tumour tissues arranged in Tissue Microarrays (TMAs). Each of
these applications highlights different aspects of the potential in MALDI-MSI data.
The remainder of this thesis is concerned with developing data analysis methods
for such applications. For example, clustering of the ovarian cancer data highlights
the ability of MALDI-MSI to separate tissue types spatially. Classification of the
endometrial data highlights the ability of MALDI-MSI to contribute to diagnostics
by use of TMAs.

The discussion of proteomics in this chapter is biased towards points relevant to
MALDI-MSI, as this is our main interest. For more complete reviews of proteomics
as a whole and the role of MALDI-MSI, see Mallick and Kuster (2010), Schwamborn
and Caprioli (2010) and references therein. Wu et al. (2003) also provide an overview
of some of the statistical challenges inherent in working with proteomics MS data.

1.1 Proteomics

Proteins are biological molecules involved in most cellular processes and consisting
of a sequence of amino acids that are chemically connected by peptide bonds. When
connected in this fashion, each amino acid in a protein is referred to as a residue.
There exist 22 naturally occurring proteinogenic amino acids in eukaryotes — or-
ganisms whose cells contain nuclei. Naively, it could be said that this means there
are 22n possible unique linear proteins of n residues — in reality it is a smaller
number than this, but a very large number nonetheless. Each gene can simplisti-
cally be thought of as code for a protein’s amino acid sequence. Living organisms
transcribe a gene and synthesise the corresponding protein as a linear amino acid
sequence which then undergoes post-translational modification and folds into a com-
plex three dimensional structure which usually determines the protein’s function and
intra-cellular location. The compounding diversity of linear amino acid sequence,
post-translational modification, and three dimensional folding is what allows pro-
teins to fill such a wide variety of functions. The complete set of proteins which
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exist in a given cell, tissue or biological fluid, under defined conditions, is termed its
proteome (Wilkins et al., 1996). Proteomics is the study of proteomes, and often
of how proteomes change. Proteomes vary considerably between different cellular
states and understanding these variations can provide remarkable insights. A cell in
the lining of your stomach would have a virtually identical genome to a neuron in
your brain, but they would contain dramatically different proteomes, and the differ-
ences between their proteomes is what allows for such dramatic differences in their
phenotypes — behaviour and functions. We are particularly interested in the effects
diseases have on the proteomes of cells. Studying these effects can elucidate mech-
anisms involved in disease behaviour and provide insight into the development and
progression of diseases. Such fundamental knowledge could lead to new approaches
for both diagnosis and treatment (Casadonte and Caprioli, 2011).

The study of proteomics includes the identification, quantification, and/or local-
isation of proteins in a sample (Ong and Mann, 2005). Samples are often sourced
from a cell culture, but other biological sources are possible — such as: saliva (Vi-
torino et al., 2004), blood (Liotta et al., 2003; Thadikkaran et al., 2005), tissue
(Chaurand et al., 2004), and even animal specimens (Khatib-Shahidi et al., 2006).
Proteomics is an extremely broad field, but techniques that can characterise the
proteins present in a sample are needed across almost all areas of the field. MS
is the core method in proteomics for characterising and identifying the proteins in
a sample (Yates et al., 2009). Many different technologies have been developed in
proteomics MS (Aebersold and Mann, 2003). In the following section we explain the
principles behind MS and its role in various applications within proteomics, and in
particular how it is extended for use in MALDI-MSI.

1.2 Mass Spectrometry

A mass spectrometer measures the Mass-to-Charge Ratio (m/z ) ratio of molecules
ionised from a given sample. To achieve this, a mass spectrometer invariably consists
of three crucial components:

1. An ion source,

2. A mass analyser, and

3. A detector.

As its name implies, the ion source converts sample molecules into gaseous ions,
which allows them to be manipulated using electromagnetic fields. The mass anal-
yser separates the ions according to their m/z by controlled application of electro-
magnetic fields. The detector counts ions after they have been separated in the
mass analyser, thereby producing a mass spectrum of ion counts versus m/z . This
section briefly discusses the ion source and mass analyser that we use in imaging
experiments, MALDI and Time-of-Flight (TOF) respectively. For MSI on biological
samples, MALDI is used almost exclusively. MALDI can also be used in Liquid Chro-
matography (LC)-MS analyses of proteins and peptides, but Electrospray Ionisation
(ESI) is the predominant ion source for LC-MS. LC-MS is very useful in proteomics
due to its ability to reproducibly identify the peptide sequences of analytes in com-
plex mixtures. As LC is a core technique in proteomics, a brief introduction to LC,
specifically LC-ESI, is included in Section 1.2.3.

Although we peripherally refer to some LC-MS identification results in Sec-
tion 3.2.2 and Section 5.4, the focus of this work is on MALDI-MSI, and so the
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discussion of MALDI-MSI in Section 1.4 is appropriately more detailed than the
discussion of LC-ESI-MS in Section 1.2.3. Note that when we discuss LC-MS what
we are ultimately referring to is Tandem Mass Spectrometry (MS/MS), which is
the fragmentation of analytes to determine their identity. Although the distinction
betwen MS and MS/MS is important, it is of only tangential relevance to our work
and so for brevity we avoid a detailed discussion and simply refer to LC-MS.

Of course there are other ion source options, often designed to ionise partic-
ular types of target molecule. For example, Laser Ablation Inductively Coupled
Plasma (LA-ICP) is a popular ionisation method for measuring trace element con-
centrations such as copper, gold, silver, arsenic, etc. LA-ICP-MS can even be used
for imaging, and has been used in conjunction with Gel Electrophoresis (GE) and
MALDI-MS to study phospho- and metal-containing proteins (Becker et al., 2009,
2010). LA-ICP-MS is one of the most extreme examples of what are called ‘hard’
ionisation methods. Hard ionisation methods often fragment large molecules during
the ionisation process, destroying information about the original intact analytes —
LA-ICP-MS typically fragments analytes down to their elemental composition. The
‘soft’ ionisation methods such as MALDI and ESI are by far the most popular for
mass spectrometric analysis in proteomics as they allow for large biological molecules
to be converted into gaseous ions with minimal fragmentation.

1.2.1 MALDI

There are many types of ion source, and most are optimised for particular substances
or molecules. MALDI is an ionisation method which avoids significant fragmentation
of large organic analytes due to the relatively low energy levels that it operates at.
MALDI functions by adding a matrix to the sample, which is a small molecule and
acts as the primary absorber for a laser system which provides the ionisation energy.
There are numerous matrices available, each with advantages and disadvantages, but
in each case the matrix is a small molecule whose role is to absorb at the wavelength
of the laser system and transfer the absorbed energy to the sample in a controlled
manner, ionising the analytes in such a way that their covalent bonds are not broken.
MALDI has the added advantage of almost always producing singly charged ions
(z = 1) for peptides. The interpretation of MALDI spectra is significantly simplified
as z = 1 can be assumed for low-mass peptides, meaning the measured m/z can
be interpreted as simply molecular mass (m) plus a proton that provides the single
positive charge. This reduction in complexity is important in the analysis of complex
biological samples, as we will discuss in more depth in Section 1.2.3.

1.2.2 Time-of-Flight (TOF)

Allowing analyte ions to travel through a field-free drift region separates analyte
ions by m/z , and this type of mass analyser is termed Time-of-Flight (TOF) as
analytes are separated based on the time they spend in the field-free drift region —
see Figure 1.1. Other types of mass analyser are also used, but we will focus on TOF-
MS as this is the most common approach for MSI, and all the data we will consider
in detail were collected using this mass analyser type. In TOF-MS, the sample is
ionised (given a charge z) before being accelerated through a potential difference,
V , to acquire a fixed amount of kinetic energy, Ek = zV . The accelerated sample
is then allowed to drift a fixed distance, d, through a field-free region to a detector
where the TOF can be measured. Because each analyte molecule was given the
same kinetic energy, their velocities in the field-free drift region will be determined
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by their mass through the relationship for kinetic energy

Ek =
1

2
mv2. (1.1)

Equation 1.1 shows that for constant kinetic energy, Ek, the squared velocity (v2)
of each analyte molecule is inversely proportional to mass (m). If we let the time
spent in the field-free drift region (TOF) be t, then v = d

t
and as V and d are known

constants, we see that mass-to-charge ratio (m/z ) is a quadratic function of TOF t,

m

z
=

2t2V

d2
. (1.2)

Equation 1.2 shows how m/z can effectively be measured by flight time — hence
Time-of-Flight (TOF)-MS. This whole process, from ionisation to detection, is il-
lustrated in Figure 1.1.
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Figure 1.1: Schematic describing the acquisition of a mass spectrum in a linear mass
spectrometer. From left to right, sample is ionised, accelerated through an electric
potential, allowed to drift through a field free region, and the time of arrival at the
detector is measured. Ion arrival time at the detector is transformed into m/z which
yields a mass spectrum.

The system described above and illustrated in Figure 1.1 is a simplification when
considering most modern instruments. Specifically, when using MALDI, the initial
laser pulse results in a small explosion of ions. This explosion results in the analyte
ions having variable initial positions and velocities (kinetic energies), and these
variations limit the accuracy of the mass spectrometer. A number of improvements
to the system described above have been made that can compensate for these small
differences in initial position and energy of analyte ions, increasing the accuracy of
modern mass spectrometers. Some notable examples of such improvements include:

• Delayed Extraction: Variation in the initial positions and energies of ana-
lyte ions can be further compensated for by a process called delayed extraction
(Vestal et al., 1995). Delayed extraction involves incorporating a short delay
time between the ionising laser pulse and switching on the accelerating electric
potential illustrated in Figure 1.1. This delay allows ions with higher initial
energy to drift further into the mass spectrometer than those with lower ini-
tial energy before the electric potential is applied. The fact that ions with
higher initial energy have travelled further into the mass spectrometer when
the electric potential is applied means they traverse less distance within the
electric field and are given less energy. Conversely, ions with lower initial en-
ergy traverse more distance through the electric field and are thereby given
more energy. This process helps compensate for variations in initial energies
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and results in ions leaving the electric potential region and entering the field-
free drift region of Figure 1.1 with a more consistent total amount of kinetic
energy — thereby improving the accuracy of the resulting measurements.

• Reflectron Mode: The system described above and in Figure 1.1 is that
of a TOF mass spectrometer in linear mode, so-called because the analyte
ions follow a path through the mass spectrometer described by a straight line.
Most modern TOF mass spectrometers still have an option to be operated
in linear mode, typically for use in analysing intact proteins, but in practice
these instruments are almost always operated in reflectron mode. In reflectron
mode, after initial acceleration ions are ‘reflected’ by a constant electric field
at an angle to their initial velocity, causing them to follow a parabolic path
and thereby creating a focal point that can compensate for small deviations in
initial energy and position of analyte ions (Boesl et al., 1992; Kaufmann et al.,
1993). This reflection step essentially replaces the field-free drift region of
Figure 1.1. In addition to compensating for some variability in initial energies
and positions, reflectron mode allows for a longer effective drift distance d, and
these two factors combined significantly improve the accuracy with which the
m/z of analyte ions can be measured, and thereby the resolution ultimately
achieved.

All the data presented in this thesis were collected in reflectron mode and using
delayed extraction.

1.2.3 Fractionation

Proteomics samples are often highly complex — containing many thousands of pro-
teins. Strong signals due to abundant proteins can obscure the weaker signals of
less abundant proteins, making these weaker signals difficult or impossible to detect.
Also, the m/z values of multiple proteins can overlap, making identification difficult.
These complications can be addressed by fractionation — separating analytes in the
sample by some physical or chemical property prior to MS acquisition. Fractiona-
tion can be done at either the protein level, or at the peptide level, corresponding
to fractionation before or after proteolytic cleavage respectively. Fractionation has
become standard in proteomics, see Wasinger et al. (1995). GE and LC are examples
of common fractionation techniques in proteomics, with LC being the predominant
fractionation technique (Gygi et al., 2000; Rogowska-Wrzesinska et al., 2013). For an
overview and review of recent approaches in LC-MS, see America and Cordewener
(2008). Although we only tangentially incorporate results that involve fractionation
in this work, the results we do present are from LC-MS at the peptide level.

GE typically fractionates on the protein level, and separates analytes by size,
charge, or both — as is the case in 2D-GE, a very popular method in proteomics.
This is achieved by using an electric field to force molecules through a gel, often
polyacrylamide, that acts as a ‘sieve’. Smaller molecules find that their movement
is restricted less by the gel media than larger molecules, and in this way molecules
are separated by size.

LC makes use of columns to bind molecules to a stationary phase — an immo-
bile surface with gaps to allow solvent to be pushed through. The molecules are
subsequently eluted over time using a changing gradient of mobile phase solvent.
Traditionally the stationary phase was hydrophilic, but ‘reverse-phase’ chromatog-
raphy is popular in proteomics, in which the stationary phase is hydrophobic and
the hydrophobicity of the mobile phase is increased gradually with time. Coupling
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this fractionation method directly to a mass spectrometer (LC-MS) allows molecules
to be characterised by MS as they elute off the column one by one, reducing the
complexity of any single spectrum tremendously.

Both LC-MS and 2D-GE are very powerful methods in terms of their ability
to characterise and identify proteins in a sample. However both these methods
involve the homogenisation of a sample prior to analysis, and this step destroys
any information about the spatial distributions of proteins within a sample. The
loss of spatial information in these established methods motivated the development
of direct tissue analysis using MALDI-MSI (Cornett et al., 2007; Groseclose et al.,
2008; Gustafsson et al., 2011).

1.3 Histopathology and Formalin Fixation

We are interested in the use of MALDI-MSI to detect spatial patterns in tissue and so
it is important to consider other histopathology techniques. Immunohistochemistry
(IHC) is the established ‘gold standard’ for mapping the spatial distribution of a
protein, and so any discussion of MALDI-MSI in the context of mapping such spatial
distributions requires comparison to, and validation by, IHC. In Section 1.3.1 we
briefly introduce histopathology and IHC in comparison to MALDI-MSI. Ultimately,
we discuss how MALDI-MSI can complement the use of these methods.

There are different methods for preserving or ‘fixing’ the spatial information in
the tissue for analysis. In the field of MALDI-MSI, fresh frozen tissue samples have
historically been used, but recent advances have allowed for the use of Formalin Fixed
and Paraffin Embedded (FFPE) tissue to acheive comparable results (Groseclose
et al., 2008). This has had widespread impact on the field as FFPE tissue samples
can be stored long term relatively cheaply, and so large archives of FFPE tissue
samples exist. Access to larger sample sizes via these FFPE tissue archives has
allowed for previously difficult research questions to be tackled, as we discuss further
in Section 1.4.2. In Section 1.3.2 we introduce the concepts underlying fresh frozen
and FFPE tissue samples, including a brief comparison of their respective advantages
and a discussion of the methodological developments that have led to MALDI-MSI
analysis of FFPE tissue. All the applications of MALDI-MSI we consider in this
thesis are on FFPE tissue.

1.3.1 Histopathology and Immunohistochemistry

Histopathology is the study of the anatomy of tissues at the microscopic scale, and is
typically performed by a pathologist, who can often provide diagnostic information
on a disease by examination of a stained section of tissue using a light microscope.
The staining step is important as tissue has little inherent contrast and, as well
as adding contrast, staining can highlight features of interest. Hematoxylin and
Eosin (H&E) is one of the most common stains used in histopathology, highlighting
cellular nuclei and cytoplasm respectively. We use images of H&E stained tissue as
a baseline of spatial structure to compare the results of many of our analyses. In
some datasets, we also use annotations made by a pathologist on the basis of H&E
stained tissue.

IHC refers to the use of an antibody to stain tissue in an attempt to highlight
the corresponding antigen (protein). Given an antibody for the protein of interest a
stain is usually achieved either by conjugating the antibody to an enzyme, such as
peroxidase, that can catalyse a visible reaction, or by tagging the antibody with a
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fluorophore. Regardless of how the antibody is made visible, this process allows for
the spatial distribution of a particular protein to be visualised, given a sufficiently
specific antibody.

In IHC the protein of interest and associated antibody are chosen a priori, and as
such this method cannot discover previously unidentified proteins with interesting
spatial distributions. MALDI-MSI does not have this limitation as it does not
target specific proteins — and so has the capacity to lead to the discovery of new
biomarkers (Schwamborn and Caprioli, 2010). However MALDI-MSI has only a
limited ability to identify proteins, so even if a mass is found to have an interesting
spatial distribution, follow-up identification and validation experiments are required.
Potential identifications for masses of interest can be inferred by mass-matching to
peptides identified in parallel LC-MS experiments on similar tissue, as demonstrated
by Meding et al. (2012). Identification is one of the strengths of LC-MS, but LC-MS
provides no information on distribution within the tissue. As IHC is cheaper, easier,
and much more established than MALDI-MSI, it makes sense to find masses with
interesting spatial distributions by MALDI-MSI, infer parent proteins by LC-MS,
and validate the spatial distributions of these proteins by IHC.

1.3.2 FFPE vs Fresh-Frozen

In this section we briefly discuss the differences between FFPE and fresh-frozen tis-
sue. FFPE tissue is prepared by first immersing tissue in a formalin solution and
then embedding the tissue in paraffin for storage. Formaldehyde in the formalin
solution creates covalent cross-linking bonds between proteins thereby ‘fixing’ the
tissue by interrupting biochemical reactions, preventing decay, and causing the tis-
sue structure to stabilise (Fox et al., 1985). This fixation process can be partially
reversed using heat in the presence of excess water, and this process is often called
‘antigen retrieval’. FFPE samples can be stored indefinitely at room temperature
while proteins (and even nucleic acids) are still recoverable for detection many years
after fixation — making FFPE samples a crucial resource in retrospective or large-
sample studies. Fresh-frozen tissue is prepared by rapidly reducing the temperature
of the tissue. This is typically achieved by placing the tissue sample in liquid nitro-
gen. Care must be taken to preserve spatial information during the cooling process
(Schwartz et al., 2003).

FFPE tissue can be stored at room temperature, while fresh frozen tissue requires
expensive refrigeration, and so FFPE tissue is much cheaper and easier to store
for long periods of time. For this reason, FFPE tissue is the international gold
standard for tissue sample storage, and large archives of FFPE tissue exist, often
with complete patient history and meta-data (Hood et al., 2005). It is usually not
feasible to obtain such a large number of fresh frozen samples, so when designing
an experiment for which a large number of samples will be needed, using FFPE
tissue is preferable. Proteomic analysis of FFPE tissue has been difficult due to the
cross-linking of the proteins (Hood et al., 2005), and so until recently, fresh frozen
tissue has been the most common sample for proteomic analysis (Poschmann et al.,
2009). As such, most studies have involved only a small number of patients due to
the limitations of using fresh frozen tissue. One of the foci in the applications of
MALDI-MSI that we consider in Section 1.5 is the application to relatively large
sample sizes, and we will consequently use FFPE tissue.

Early work on antigen retrieval originates from the immunology field, as dis-
cussed by Brown (1998). First attempts involved simple enzymatic cleavage, but
Shi et al. (1991) introduced the first method to employ additional heating via a mi-
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crowave source. Since the work of Shi et al. (1991), more heat-based methods were
developed and Shi et al. (2005) discussed the standardisation of these methods as
they matured in the IHC field. Eventually these developments were transferred into
the increasingly popular mass spectrometric fields, as evidenced in Palmer-Toy et al.
(2005) and Crockett et al. (2005). Groseclose et al. (2008) suggested a methodology
for antigen retrieval and subsequent MALDI-MSI of FFPE lung tissue. Gustafsson
et al. (2010) applied the methodology of Groseclose et al. (2008) to FFPE ovarian
cancer tissue, and proposed an improved antigen retrieval methodology. In all the
applications we consider in Section 1.5, the methodology of Gustafsson et al. (2010)
was used for antigen retrieval.

1.4 MALDI-MSI

MALDI-MSI is a technique which collects a MALDI-MS spectrum from many points
on the surface of a tissue sample. As we have already introduced MALDI-MS in
Section 1.2, here we will focus on the imaging aspect, and properties of MALDI-MSI
— i.e. the process of collecting many MALDI-MS spectra from spatially distributed
points across the surface of a tissue sample.

There are two main goals that use of MALDI-MSI can facilitate:

• To resolve the spatial distributions of biomolecules of interest within tissue
samples.

• To acquire data from large numbers of patients by use of TMAs.

We discuss advantages and disadvantages of approaches to these two main goals in
Section 1.4.1 and Section 1.4.2 respectively. For a review of MALDI-MSI see Seeley
and Caprioli (2011). Groseclose et al. (2007) and Aoki et al. (2007) also provide
discussions on MALDI-MSI.

Other MSI methods exist, even within proteomics — Becker et al. (2009, 2010)
are good examples of this, making use of Laser Ablation Inductively Coupled Plasma
(LA-ICP)-MSI to study metalloproteins. We focus specifically on MALDI-MSI due
to the usefulness of MALDI in proteomics, as discussed in Section 1.2.1. The process
of taking many measurements on the surface of a tissue sample by MALDI-MSI is
illustrated in Figure 1.2. In order to collect MALDI-MSI data from a tissue section as
depicted in Figure 1.2, a number of sample preparation steps must first be completed:

• Antigen Retrieval - If FFPE tissue is used, cross-linking caused by formalin fix-
ation must be partially reversed prior to analysis, as discussed in Section 1.3.2.
We use the method suggested by Gustafsson et al. (2010) for citric acid antigen
retrieval.

• Enzyme Digestion - It can be useful to digest proteins by use of an enzyme (eg.
trypsin) prior to acquisition, as the smaller peptides produced by enzymatic
cleavage can be measured more accurately. All the peptide data we consider
was acquired after trypsin digestion, so the signals we observe are tryptic
peptides. For the glycan data a different enzyme, PNGase F, was used to
cleave off the asparagine (N)-linked glycans of interest.

• Internal Calibrants - Known calibrants are added so that each spectrum will
contain calibrant peaks that can be used for mass-calibration. We follow the
procedure for internal calibration suggested by Gustafsson et al. (2012). Coin-
cidentally, these internal calibrants can also be useful for data quality control
as discussed in Section 4.4.
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• Matrix deposition - A matrix, as briefly discussed in Section 1.2.1, needs to be
deposited onto the tissue in order to facilitate ionisation. In MALDI-MSI there
are two approaches to this, which we introduce and compare in Section 1.4.1.

Tissue section Conductive glass slide

Sample preparation
& matrix application

Laser

Io
n
co
u
n
t

m/z

Io
n
co
u
n
t

m/z

Io
n
co
u
n
t

m/z

Spot

Mass Spectra

Figure 1.2: A schematic diagram illustrating the work-flow for MALDI-MSI. The
depicted spots reflect a spotting approach — if a spraying approach was used the
reagent would be uniformly distributed accross the slide. Note that ‘Ion count’ is
often simply called ‘intensity’.

1.4.1 Spotting vs. Spraying

Care needs to be taken in all of these sample preparation steps to preserve spatial
information by limiting the mobility of molecules of interest on the surface of the
tissue (Schwartz et al., 2003). In some of the sample preparation steps, most no-
tably the internal calibrant and matrix deposition steps, limiting the mobility of
molecules of interest can be achieved by ensuring that reagents are deposited in
non-overlapping ‘spots’. There are two widely accepted approaches for depositing
reagents onto the surface of the tissue, which we will call ‘spotting’ and ‘spraying’
respectively. Here I will briefly introduce these two approaches, and discuss their
relative advantages and disadvantages. For a more detailed discussion, including
some examples of instrumentation for various applications, see Walch et al. (2008).

Spraying

Spraying involves aerosolising the reagents and depositing them as a fine mist. This
involves the adjustment of many tuning parameters such as droplet size, concentra-
tion, and total volume deposited as well as the number of spray deposition cycles.
There are two main disadvantages to spraying:
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• Risk of mobilising the molecules of interest — by random chance multiple
droplets could merge over a significant region of tissue, allowing molecules of
interest to disperse across this region.

• The possibility of gaps — in order to automate data acquisition spectra are
collected from arbitrary positions, some of which may, by random chance, not
have matrix on them, and thus no molecules will ionise from those positions.

However, the impact of these disadvantages can be controlled and greatly reduced
by careful optimisation of the tuning parameters. One of the main advantages
of spraying is the ability to push the limits of lateral resolution (centre to centre
distance between spectra acquisition locations). All the applications we consider use
spraying, with lateral resolutions ranging from 50µm to 100µm. Guenther et al.
(2011) have pushed the limits of this technology, demonstrating that it is possible
to resolve images at lateral resolutions as low as 5µm under certain conditions.

Spotting

Spotting utilises an instrument comparable to an ink-jet printer to deposit reagent at
pre-allocated positions (or spots) across the surface of the tissue. After the antigen
retrieval, trypsin, internal calibrants, and matrix would be spotted on the same
grid of positions, and a mass spectrum collected from each spot. This guarantees
that each spot will contain both internal calibrants and matrix. Spotting has the
additional advantage that it guarantees there will be no overlap between spots,
thereby restricting the mobility of molecules to within each spot. The disadvantages
of spotting when compared to spraying are: it is slower (depositing individual spots is
time consuming), the printing instrumentation is more expensive, and the minimum
achievable lateral resolution (centre to centre distance between spots) is generally
more coarse — typically ≥ 150µm.

In addition to the glycan data we consider in Section 1.5.2, Gustafsson et al.
(2015) also considered spotted droplet data. Spotting can be most useful when the
objective is to acquire a small number of high-quality spectra and a low lateral
resolution is not a priority. This often occurs when the aim is to provide a proof-of-
principle demonstration of a new methodology or technique, as was the case when
Gustafsson et al. (2015) demonstrated that it was possible to use MALDI-MSI to
map the spatial distributions of asparagine (N)-linked glycans by using PNGase F
to cleave the glycans of interest from their parent proteins. The promising large
droplet results then prompted the follow-up experiment using spraying to achieve
better lateral resolution, which which we consider in Section 1.5.2.

1.4.2 TMAs for MALDI-MSI

A Tissue Microarray (TMA) is a physical array of cylindrical tissue cores extracted
from blocks of preserved patient tissue. Cores are typically less than 2mm in diam-
eter (Meding et al., 2012) and the number of cores in a single TMA block depends
on the size of the cores — smaller diameters allow more cores to fit in a single block,
but less tissue to be analysed in each core. Using cores ∼ 1.5mm in diameter it is
typical to fit of the order 50 cores in a single TMA. This arrangement allows for
the parallelisation of tissue analyses, as the entire TMA can be treated as a single
sample. For example, the entire TMA can be sectioned as a single block, resulting
in tissue from many samples being represented in each section — an H&E stain of
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such a section is shown in Figure 1.3, including tumour annotations from a patholo-
gist. TMAs were originally developed in order to parallelise IHC staining, but more
recently have attracted attention for MALDI-MSI.

Construction of a TMA involves the arrangement of tissue cores from multiple
patient samples (biopsies) into a new ‘TMA’ block that can then be sectioned as
one. The application of MALDI-MSI to TMAs allows for data to be collected from
a large number of patients very quickly — see Groseclose et al. (2008); Steurer
et al. (2013). A one-day sample preparation of sections from such a TMA allows
for an overnight MALDI-MSI experiment to collect data on more than 50 cores
in one 24 hour period. This approach is significantly faster than more traditional
tissue analysis approaches, such as LC-MS. If MALDI-MSI can be shown to produce
diagnostically relevant information, its speed would allow for it to potentially be
applied for clinical screening of individual samples (Casadonte and Caprioli, 2011).

Figure 1.3: A H&E stained section of a typical TMA, annotated by a pathologist
in black to highlight tumour regions, see Mittal et al. (2016). This corresponds
to a section of the TMA labelled ‘EB’ of the endometrial data we introduce in
Section 1.5.3 and Table 1.4.

1.5 Data

We consider datasets from three applications of MALDI-MSI:

• Ovarian Cancer — Peptide data from full sections of ovarian tumours embed-
ded in surrounding peritoneal tissue.

• Murine Glycans — N-linked glycan data from sections of murine kidney, part
treated with PNGase F, part untreated.

• TMAs — Peptide data from TMAs. We consider two sub-applications. En-
dometrial cancer forms our main interest, and vulvar cancer forms a secondary
interest which we mainly use for replicating results.
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Table 1.1: Data Acquisition Parameters

Lateral
Application m/z range Resolution Citation
Ovarian Sections 1000− 4500 100µm Gustafsson (2012)

Winderbaum et al. (2015)

Murine Glycans 800− 4500 100µm Gustafsson et al. (2015)

Endometrial TMAs 800− 4000 60µm Mittal et al. (2016)
Winderbaum et al. (2016)

Vulvar TMAs 800− 4000 60µm

All the data originate from FFPE tissue samples that have been sectioned — cut
into thin cross-sections, typically 6 − 10µm thick. We will use the word ‘dataset’
to mean the data collected from one such section of tissue, except where otherwise
specified. All the data were acquired by MALDI-MSI at the Adelaide Proteomics
Centre (APC), but on two different instruments, and using different parameters.
Parameter choices involved in the data acquisition are shown in Table 1.1, as well as
the citations relevant to each application including several papers we have published
in the process of pursuing this research.

All the data we will deal with is in ‘peaklist’ format, meaning that some pre-
processing has already been performed to extract the signals of interest from the
raw spectra. This pre-processing has been done in proprietary software (flexCon-
trol, flexAnalysis, and flexImaging, Bruker Daltonik, http://www.bruker.com),
and involves a number of steps: smoothing (Gaussian kernels), baseline reduction
(TopHat), and finally peak picking (SNAP). The SNAP algorithm isolates mono-
isotopic peaks and defines significant peaks as those peaks with a Signal-to-Noise
Ratio (SNR) of two or higher. These pre-processing and peak-picking methods could
be improved, and as all our analysis is downstream of the peak-picking (that is, it
occurs after peak-picking), any improvements to these pre-processing and peak-
picking steps could clearly carry through to our results. However, the object of
most of our work is proof-of-principle and so, although interesting, optimisation of
pre-processing methods falls beyond the scope of this work.

In Sections 1.5.1, 1.5.2 and 1.5.3 we introduce and discuss details for the three
applications of MALDI-MSI respectively. When introducing the details of these
applications, we also discuss the objectives of each application, and the statistical
approaches we will use in order to address these objectives, in general terms. In
Section 1.6 we introduce some statistics background, in particular introducing the
terms ‘clustering’ and ‘classification’, giving some added context and expanding
upon the approaches briefly mentioned here in Section 1.5.

1.5.1 Ovarian Cancer Application

The ovarian cancer data we will consider relate to tumours embedded in peritoneal
tissue (elements of the internal abdominal wall) from three ovarian cancer patients.
Further details can be found in the work of Gustafsson (2012), and for some moti-
vation on why the study of ovarian cancer is of importance, we quote Winderbaum
et al. (2015):
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“Ovarian cancers are virtually asymptomatic and as a result the vast
majority of cases are detected when the disease has metastasised. For
these patients, radical surgery and chemotherapy are often insufficient to
address the disease adequately and many patients relapse. The combi-
nation of late-stage diagnosis and unsuccessful treatments makes ovarian
cancer the most lethal gynaecological cancer, with advanced stage pa-
tients exhibiting a five year survival rate of less than 30% (Ricciardelli
and Oehler, 2009; Jemal et al., 2011). The keys to addressing ovarian
cancer will be: increasing our understanding of the mechanisms driv-
ing cancer progression, identifying molecular markers which can predict
treatment success and identifying new treatment targets. As proteins
are key functional components of cells and tissues, determining protein
distributions in cancer tissue represents a crucial step in addressing these
key aims.”

The ovarian cancer datasets originate from patients who were diagnosed with
serous ovarian cancer and went through surgery to have tumours removed. We
consider 12 datasets collected from sections of surgically excised ovarian cancer tu-
mours — 4 from each of 3 patients, where the 4 datasets from each patient are from
multiple tissue sections of the same tumour or tissue block. We will refer to the
patients as A, B, and C, and will refer to the four datasets from patient A as; A1,
A2, A3, and A4, and similarly for patients B and C. Table 1.2 provides some details
for each of these datasets, indicating the scale of these data. The number of empty
spectra, that is spectra with no peaks, can be used as a heuristic for quality control
as every spectra, even off-tissue spectra, should contain at least the internal cali-
brants and so a spectrum being empty most likely indicates acquisition conditions
that require examination or improvement — inconsistent matrix crystallisation, for
example. The number of empty spectra shown in Table 1.2 are generally very small
relative to the total number of spectra, indicating no obvious problem with the data
acquisition, although amongst all 12 datasets C2 and C4 seem to have notably more
empty spectra than others. There is no immediately obvious reason why these two
datasets should be any different to the others, but we will notice these empty spectra
in further analyses in Chapter 2.

Table 1.2: Total number of peaks, spectra, and empty spectra (spectra with no
peaks) for each of the ovarian cancer datasets.

Dataset Name # Peaks # Spectra # Empty Spectra

A1 1721862 13916 4
A2 1616042 14225 2
A3 1301720 14059 9
A4 1608226 15386 25
B1 993622 8554 0
B2 1201711 11322 0
B3 976379 9253 0
B4 1209893 11018 1
C1 630973 6731 19
C2 727795 9059 119
C3 886368 9419 14
C4 423993 8404 99

Ovarian cancers are known to be quite heterogeneous tissues (Deininger et al.,
2008), and this motivates the use of MALDI-MSI in acquiring spatial information
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Table 1.3: Two peptide m/z values found in many of the ovarian cancer MALDI-MSI
datasets and their inferred parent proteins. Peptide sequences and parent proteins
were inferred by mass matching to concurrent LC-MS analyses and validated by
both in situ tandem MALDI-MS and IHC. IHC stains used for validation are shown
in Figure 1.4

LC-MS/MS UniProtKB/SwissProt Protein
mass [M+H]+ Database Entry Name Name

1628.8015 ROA1 HUMAN Heterogeneous nuclear
ribonucleoprotein A1

2854.3884 K1C18 HUMAN Keratin 18

Figure 1.4: IHC stains used for validation of the proteins in Table 1.3 on the ovarian
cancer patients A and B as introduced in Table 1.2. Columns correspond to protein
antibody stains, rows to patients.
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that can de-convolute the inherent heterogeneity of the tissue (Gorzolka and Walch,
2014). Gustafsson (2012) describes the acquisition of these data and, amongst other
things, that these data contain spectra from both tumour tissue and surrounding
non-tumour tissues excised as a ‘margin of error’ around the tumours during surgery.
These are peptide data and the main interest is to find peptide signals that differen-
tiate between different tissue types, particularly peptides that are present more in
tumour while being less prevalent in the surrounding non-tumour tissues. We ap-
proach this in a two-step process, first using k-means clustering to separate the tissue
types in an automated manner, second using a Difference in Proportions of Occur-
rence Statistic (DIPPS)-based feature extraction step to find a short-list of potential
peptides of interest. We introduce and discuss this two step process in Chapter 2.
In Section 3.1 we then compare these short-lists of tumour-identifying peptides be-
tween patients, to separate the within-patient variability from the between-patient
variability and detect peptides specific to the short-lists from certain patients —
i.e. peptides that may be over-expressed by tumour cells in particular patients but
not others. Chapter 2 and Section 3.1 represent a more comprehensive view of the
results published by Winderbaum et al. (2015), and provide us the opportunity to
discuss these results in more detail. In the future, such peptides could form a start-
ing point for experiments investigating individualised treatments, but at this initial
stage the ability to detect such peptides acts primarily as a proof-of-principle that
can then be followed up.

Similar to the methodology of Meding et al. (2012), LC-MS data was collected in
parallel for these ovarian cancer samples. Peptide identities of masses in the MALDI-
MSI data can be inferred by matching to the masses of peptides identified in the
LC-MS data. Two such peptide masses that we find to be of particular interest later
in Chapter 2, with their parent proteins, are shown in Table 1.3. IHC validation
was also carried out for three selected proteins, including the two of Table 1.3, and
the IHC stains for these are shown in Figure 1.4.

1.5.2 N-Glycan Application (in Murine Kidney)

These glycan data relate to sections of murine kidney treated with PNGase F to
release asparagine (N)-linked glycans. The object of these data is to serve as a
proof-of-principle that glycans can effectively be released in situ and measured by
MALDI-MSI. Further details are provided by Gustafsson et al. (2015), who also
provide some motivation for why the study of glycans is of interest:

“The majority of mammalian secretary and membrane proteins are mod-
ified through glycosylation: the covalent linkage of polysaccharide moi-
eties (i.e., glycans) to either serine/ threonine (O-linked) or asparagine
(N-linked) residues (Pan et al., 2011).” ... “Much of the interest in the
analysis of protein glycosylation stems from the observation of altered
glycosylation patterns in cancer (Pan et al., 2011). An understanding
of these alterations could provide novel biomarkers of disease as well as
new treatment targets for anticancer therapies (Abbott et al., 2008).”

The glycan experiment involved the use of an enzyme PNGase F to free N-linked
glycans from FFPE tissue in order to be available for analysis, this sample prepara-
tion step essentially replaced that of the trypsin digestion discussed in Section 1.4.
The objective of the experiment was to demonstrate the proof-of-principle that N-
linked glycans could be detected by MALDI-MSI on FFPE tissue. As this was a
proof-of-principle experiment and not yet a study of a clinically relevant disease
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such as cancer (which is intended to be the next application of this method), non-
precious murine (rodent) kidney tissue was used. Gustafsson et al. (2015) carried
out three different analyses on these samples: LC-MS of homogenised tissue treated
with PNGase F, and both large droplet in situ MALDI-MS (as mentioned in Sec-
tion 1.4.1), and high-resolution MALDI-MSI on both tissue treated with PNGase
F, and (untreated) control tissue.

For the high-resolution MALDI-MSI data we will consider, spectra were collected
from two comparable regions of tissue, one of which was treated with the enzyme
PNGase F and the other, ‘control’, region was not treated with the enzyme. Masses
observed in the first region but not in the second are expected to be glycan masses,
and further evidence for their identity as glycans was established by Gustafsson et al.
(2015) using the additional LC-MS and large droplet data. As this experiment es-
sentially consists of only a single MALDI-MSI dataset, some of the decisions made in
preprocessing the ovarian cancer datasets (where a major objective was to compare
multiple datasets) are no longer easily justified for the glycan dataset. Specifically,
the preprocessing decisions relate to the method for discretisation of the m/z do-
main, for the ovarian cancer datasets we propose a naive ‘data-independent’ binning
approach (explicitly defined in Appendix A), as this allows for multiple datasets to
be combined and compared intuitively. However when this is not necessary, better
approaches exist, and in Section 3.2 we discuss this point in more detail, and intro-
duce alternative ‘data-dependent’ discretisation methods appropriate for the glycan
data. Ultimately we apply the ‘DIPPS’ feature extraction approach introduced in
Chapter 2 to select likely glycan mass candidates in the MALDI-MSI data, and
match them by mass to identified glycans from the LC-MS as shown in Table 3.2.

1.5.3 TMA Applications

As mentioned in Section 1.4.2, an exciting application of MALDI-MSI is to TMAs —
as this allows data from large cohorts of patients to be collected rapidly, potentially
allowing difficult diagnostic and prognostic problems to be addressed. We consider
two TMA applications of MALDI-MSI, one primary application (to endometrial
cancer) that we will focus on and a secondary, smaller, application (to vulvar can-
cer) that we will use primarily to validate and replicate results obtained from the
endometrial cancer application. The objective is to demonstrate that these data
can be used to predict clinically relevant diagnostic information, justifying further
research into the use of MALDI-MSI of TMAs for clinical screening and diagnostics.

Endometrial Cancer TMAs

The endometrial cancer data relate to TMAs of endometrial cancer, providing access
to data from a relatively large number of patients (43), as discussed in Section 1.4.2.
The diagnostic variable of interest for prediction is Lymph Node Metastasis (LNM)
status, which we attempt to classify on the basis of the MALDI-MSI data in Chap-
ter 5. Further details on the acquisition of these data can be found in the work of
Mittal et al. (2016), and Winderbaum et al. (2016) provide some motivatation on
why the the classification of LNM in endometrial cancer is of interest:

“Endometrial cancer is the most common gynaecological malignancy in
Australia with 2256 diagnosed cases in 2010 and 381 associated deaths in
2011 (AIH, 2012). The presence or absence of Lymph Node Metastasis
(LNM) is the most important prognostic factor in endometrial cancer as
patients with localised disease have a 5 year survival rate of 96%, which

16



drops to just 17% for patients with metastatic disease (Rungruang and
Olawaiye, 2012). Accurately staging endometrial cancer is difficult and a
large percentage of patients are misclassified prior to treatment (Jacques
et al., 1998). Although the presence of LNM is confirmed in only around
15% of cases (Morrow et al., 1991; Creasman et al., 2006), the major-
ity of endometrial cancer patients undergo radical treatment including
the removal of pelvic lymph nodes as a precautionary measure to com-
pensate for our current inability to accurately stage the disease. Lymph
node removal is associated with significant complications including lower
extremity lymphoedema, which has been described in up to 38% of pa-
tients (Todo et al., 2010). A classification system based around predictive
tissue markers of metastasis would greatly benefit stage I endometrial
cancer patients by helping determine optimal treatment strategies that
avoid unnecessary, invasive procedures.”

LNM is highly predictive of survival but can be difficult to diagnose pre-surgery.
Clinical variables such as grade, size, and depth of myometrium invasion are some-
times available pre-surgery but do not correlate well enough with LNM to allow
accurate prediction — see Table 1.5. We aim to demonstrate that it is possible to
improve on this prediction by applying suitable classification methods to MALDI-
MSI data from TMAs.

If a patient is LNM positive and they do not have their lymph nodes excised
with their primary tumour the cancer is very likely to recur. Generally the lymph
nodes are excised at the same time as the primary tumour, as it is difficult to
diagnose the LNM status pre-surgery and the risk of leaving any potentially LNM
positive lymph nodes outweighs the additional invasiveness of the surgery to remove
them. In addition to LNM status potentially providing more accurate prognostic
prediction due to its importance to survival, being able to diagnose LNM status
could potentially contribute to the individualisation of patient treatments. Patients
who are negative for LNM could be subjected to less invasive surgery as their lymph
nodes would not need to be removed. Reduction in the invasiveness of the surgery
could then have positive carry-on effects on post-surgery recovery time and quality
of life.

The endometrial cancer datasets we consider originate from 57 patients diag-
nosed with endometrial cancer who had been through surgery to have their tumours
excised. Two cylindrical 1.5mm diameter tissue cores from each patients primary tu-
mour were taken and the cores arranged into two TMA blocks — each TMA block
consisting of a 7 × 9 grid of cores, including some control cores and some empty
positions. These TMA blocks were then sectioned. We consider 4 datasets, two
sections of each of the two TMA blocks. We call the two TMA blocks ‘EA’ and ‘EB’
respectively. We will denote the two datasets from EA EA1 and EA2, and similarly
denote the two datasets from EB EB1 and EB2. Although each core is taken from
primary tumour tissue, some sections of some cores still have non-tumour tissue or
are entirely missing due to the three dimensional nature of the cores and the hetero-
geneity of the tumours. In order to address this potential tissue heterogeneity each
section was also H&E stained and the tumour tissue was manually annotated by a
pathologist — see Mittal et al. (2016). Similarly to Table 1.2, Table 1.4 provides
some details for these datasets. The additional column ‘# Cancer Spectra’ gives the
total number of spectra from regions annotated as tumour tissue by the patholo-
gist. Notice that the total number of cancer spectra is significantly smaller than the
number of spectra total — this is likely because of both small margins of off-tissue
regions being acquired, and due to the significant heterogeneity of the tissue cores.
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Table 1.4: Basic statistics on endometrial TMA datasets

Dataset Name # Peaks # Spectra # Empty Spectra # Cancer Spectra

EA1 3153313 32562 34 11431
EA2 2799700 26529 54 10122
EB1 3098311 34127 1 12464
EB2 3362057 30343 23 11860

In the ovarian cancer data we refer to datasets as they conveniently separate the
data into biological and technical replicates. However in the endometrial cancer data
the goal is to make predictions about patients, and many patients are represented
in each dataset. We combine all four of the datasets described in Table 1.4, and in
our analysis we will partition these data by patient. Also, after closer inspection
of the clinical records it was determined that several patients represented in the
TMAs are not comparable to the others for the purposes of predicting LNM —
belonging to a different sub-type of cancer expected to have very different molecular
composition and behaviour. Data from these patients will be completely ignored,
and after having removed these inappropriate patients we are left with data from
43 patients, 16 of which are LNM positive. Table 1.5 shows some clinical variables
of interest as well as details similar to Table 1.2 and Table 1.4 for these 43 patients.

We will approach the question of predicting LNM on the basis of the MALDI-
MSI data using the framework of classification. In Chapter 4 we introduce a variety
of classification methods from the literature, some established, and one quite recent.
We also discuss the difficulties in classification of such high-dimensional data, and
present two different approaches to dimension reduction, the comparison of which
is the focus of Winderbaum et al. (2016). We also discuss our approach to pre-
processing these data, and our novel approach to what we call ‘normalisation’ that
could potentially improve classification results. After having introduced all these
methods in Chapter 4, we apply them to the endometrial cancer data in Chapter 5,
and discuss the results in detail. Finally we conclude that useful information that
can be used to improve diagnosis of LNM status can be obtained from these data in
a variety of ways. The variable reduction method suggested in Winderbaum et al.
(2016) works by ranking variables and selecting the highly-ranked ones for use in
classification. This approach has the additional advantage that highly-ranked vari-
ables can be further investigated as potential biomarkers for LNM, and we consider
some promising variables with which to begin this process in Section 5.4.

Vulvar Cancer TMAs

The vulvar cancer data relate to another gynaecological cancer for which, similar
to endometrial cancer, LNM is highly predictive of prognosis and important to
the choice of treatment. While providing access to a smaller cohort (28) than the
endometrial cancer data, the vulvar cancer data represents an independant dataset
on a different (although related) type of cancer.

In Chapter 5 we compare different approaches to the classification of the endome-
trial cancer data described above. Ultimately we note that certain approaches tend
to perform better than others and it is of interest to validate that these trends can
be reproduced in a different context. We will use the smaller vulvar cancer dataset
to reproduce all the analyses included in Chapter 5 in order to investigate which
trends are reproduced in this second dataset, and which are not. The results of
classification on the vulvar cancer data are included in Appendix D, and discussed
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Table 1.5: Basic statistics on endometrial TMA data, per patient. Grade, Size, and
Myometrium Invasion are clinical variables known to be correlated to LNM. These
clinical variables are sometimes known before surgery, and have been considered for
use in prediction of LNM status but, as reflected in these data, do not allow for very
accurate prediction. Note the presence of some missing values, these correspond to
patients whose stored clinical data are incomplete.

Patient # LNM Grade Size
Myometrium

# Spectra
# Cancer # Empty

Invasion Spectra Spectra

17 TRUE 2 40 2 1098 850 6
18 TRUE 2 15 21 1941 853 8
11 TRUE 2 22 1695 176 1
12 TRUE 2 7 2446 825 1
13 TRUE 3 22 2171 347 1
14 TRUE 3 35 19 2694 1313 0
20 TRUE 2 40 27 2271 826 2
21 TRUE 2 40 7 1978 1360 0
22 TRUE 2 100 5 2483 1501 0
1 TRUE 1 40 11 2315 1757 1
4 TRUE 1 15 3 1883 723 1
2 TRUE 1 85 9 2031 1329 0
9 TRUE 3 25 0 2286 792 1
6 TRUE 1 95 25 1300 500 0
5 TRUE 3 35 10 3039 1169 0
7 TRUE 1 55 18 2480 881 0
36 FALSE 2 90 8 1937 1666 5
37 FALSE 1 30 0 2587 2369 3
51 FALSE 3 40 0 2231 841 5
46 FALSE 3 35 7 2480 1276 4
40 FALSE 1 20 0 2414 130 1
47 FALSE 1 20 4 2144 1802 1
48 FALSE 1 50 13 2243 1955 6
49 FALSE 2 40 5 1477 27 4
56 FALSE 1 40 2 1178 609 0
57 FALSE 1 21 34 1857 1125 1
58 FALSE 1 32 5 2622 457 0
60 FALSE 1 24 9 1802 1077 1
61 FALSE 3 40 16 2270 1328 1
8 FALSE 3 5 2 3131 671 1
35 FALSE 1 75 14 2398 1922 1
32 FALSE 2 2160 1664 0
30 FALSE 2 30 9 1059 90 0
33 FALSE 2 60 15 2348 1630 2
65 FALSE 3 80 33 1361 1042 4
10 FALSE 2 30 5 2241 1136 0
29 FALSE 1 16 2 1875 207 0
52 FALSE 1 20 1 2162 1932 0
53 FALSE 1 40 2 2262 1356 0
54 FALSE 3 35 15 1411 1199 1
55 FALSE 2 30 2 1849 1245 2
44 FALSE 1 12 10 2283 760 1
38 FALSE 1 40 13 1900 1159 0
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in Section 5.6.
The vulvar data, similarly to the endometrial cancer described above, consists

of multiple sections from two TMAs, but fewer patients are represented in the vul-
var TMAs as compared with the endometrial. The endometrial data represents
information from 43 patients relevant to this study, but the vulvar data represents
information from only 28 patients.

1.6 Statistics Background

As mentioned above, the data we will consider is of peaklist form. Peaklist data
does not fit into the standard statistical paradigm of ‘observations’ and ‘variables’
in an obvious way, as the data simply consist of peaks with m/z values, several
other characteristics (such as peak height or intensity, integrated area, and SNR),
and labels indicating the spectra from which the peaks originated.

In each application we construct observations and variables from the peaklists
in a different way appropriate to the particular context. In many contexts our
observations correspond to spectra as is common in the analysis of MALDI-MSI data,
but in the endometrial data for example our observations correspond to patients.
The variables will always be some discretisation of the m/z domain — where each
variable corresponds to an m/z interval and peaks are grouped based on which
variable or m/z interval they fall into. We will present different approaches to
discretisation of the m/z domain, each with advantages and disadvantages, and will
use different approaches in different applications. The values of these variables for
any given spectrum then correspond to a particular characteristic of the peaks in
that spectrum within the relevant m/z interval. Characteristics that can correspond
to the values of the variables include: the intensity of a peak, the integrated area
of the peak, SNR of the peak, and binary values coding the presence or absence
of a peak. In cases when multiple peaks from a single spectrum occur in the same
m/z interval, these values can be averaged, or the maximum value taken, but we
will choose sufficiently small m/z intervals such that multiple peaks from the same
spectrum should not occur in the same m/z interval. In Section 2.3.1 we discuss
how to choose m/z intervals that are sufficiently small such that multiple peaks from
the same spectrum do not occur in the same m/z interval. We will consider each of
these options for values of the variables in different applications.

In each of the options discussed above, the decisions about how to discretise the
m/z domain into variables and what objects correspond to observations, allow us
to represent the data as a d× n data matrix X, where rows correspond to variables
and columns to observations. Representing these data in this form allows us to
draw on the methods from the multivariate statistics literature. Two such methods
we will consider in some detail are clustering, and classification. We introduce
these two methods, along with some associated concepts and a little discussion of
the literature, in Section 1.6.1 and Section 1.6.2 respectively. Note that we will
repeat much of the discussion from Section 1.6.2 in Section 4.1, where we discuss
the particular classification methods we will use in more detail. Similarly we will
repeat some of the discussion from Section 1.6.1 in Section 2.2.2, where we discuss
the particular clustering method we will use in more detail.

1.6.1 Clustering, Similarity, and Distance

Clustering is a field in which the objective is to group (usually partition) observations
into ‘clusters’ such that observations in the same cluster are more ‘similar’ to each
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other than observations from different clusters. See Jain et al. (1999) for a review
on clustering.

In different applications the term ‘similar’ can be interpreted in different ways but
a general way to discuss it is in terms of a distance — two observations are ‘similar’
if the distance between them is small. Distance can be defined more precisely, for
example as a pseudometric (Definition 1).

Definition 1. Distance (Pseudometric): a non-negative function D such that
for a set S, D : S × S → R and for every x, y, z ∈ S,

1. D(x, x) = 0,

2. D(x, y) = D(y, x), and

3. D(x, z) ≤ D(x, y) +D(y, z).

The word distance is sometimes used to mean any function D : S × S → R
such that smaller values of D(x, y) indicate x and y are more ‘similar’, for some
intuitive interpretation of the term ‘similar’. This more vague usage of the word
‘distance’ is more general and includes functions that are not pseudometrics but
could still be meaningfully used in any of the places we use pseudometrics. That
said, all the distances we use are pseudometrics, so in the context of this thesis the
two usages of the word ‘distance’ are interchangeable and we simply use the more
precise pseudometric definition (Definition 1) to avoid confusion.

Although we use several other distances later, in the context of clustering we
focus on three distances in particular: the Euclidean distance (or L2 norm), the
cosine distance (Definition 2), and the Hamming distance (Definition 3).

Definition 2. Cosine Distance: Dcos : Rd × Rd → [0, 2], such that

Dcos(x,y) = 1− x · y√
(x · x)(y · y)

. (1.3)

Definition 3. Hamming Distance: DHam : {0, 1}d × {0, 1}d → [0, d], such that

DHam(x,y) = d− x · y − (1− x) · (1− y). (1.4)

The Euclidean distance allows ‘similar’ to be interpreted as ‘spatially nearby’,
and as such is useful in many clustering applications. Although there are more gen-
eral definitions for the Hamming distance than Definition 3, we restrict the domain
to d-dimensional binary vectors {0, 1}d, as this is the context in which we will use
the Hamming distance. It is interesting to note that, in this restricted domain of bi-
nary vectors, the Hamming distance is actually equivalent to the squared Euclidean
distance, i.e. DHam = D2

Euc.
There are many different approaches to clustering, see Koch (2013, Chapter 6)

and references therein. One popular choice is to use Markov chain Monte Carlo
methods to estimate mixture model parameters — for references to this approach
see McLachlan and Basford (1988); Peel and McLachlan (2000). Xu et al. (2005)
review more clustering approaches, including so-called ‘fuzzy’ clustering and neural
network based methods. One approach to clustering of particular note due to its
popularity in the analysis of MALDI-MSI is that described by Deininger et al. (2008),

21



which combines ‘supervised’ and ‘unsupervised’ steps, and is described as as ‘semi-
supervised’ by Deininger et al. (2008). Due to the popularity of such semi-supervised
approaches in the MALDI-MSI context we will briefly describe the approach of
Deininger et al. (2008), including a brief discussion of agglomerative hierarchical
clustering that forms a component of it, although we do not pursue the idea further.
Finally we will briefly discuss the k-means approach, which we discuss in more detail
in Section 2.2.2, as this is the clustering approach we will primarily rely on in this
work.

Agglomerative hierarchical clustering is an approach in which each observation
can be thought of as beginning in a separate cluster, and an iterative process is
implemented such that at each iteration two clusters, chosen due to being the ‘most
similar’ in some sense, are combined. The total number of clusters is reduced by one
in each iteration. This process ends either when a predefined number of clusters is
reached or after n − 1 steps when all observations are in the same cluster. Hierar-
chical clustering such as this can be visualised in a dendrogram or hierarchical tree,
describing the order in which clusters were combined. Sometimes the dendrogram
representing a hierarchical clustering is informative, such as in the context described
by Winderbaum et al. (2012). In the context of MALDI-MSI such a dendrogram
is difficult to interpret due to the spatial information not being represented in the
dendrogram. A specific partition of the observations into clusters can be plotted
spatially and thus interpreted usefully. In order to produce a specific partition using
standard hierarchical clustering methods a predefined number of clusters needs to
be chosen, but justifying this choice can be difficult.

So-called ‘semi-supervised’ methods popular in the analysis of MALDI-MSI data,
such as that described by Deininger et al. (2008), produce a particular set of clusters
by first visualising a standard, unsupervised, agglomerative clustering in a dendro-
gram and then allowing the user to recursively open branches in the dendrogram
— essentially performing a ‘supervised’ divisive clustering step where the choice of
which cluster to split in each case is determined by the user. Beginning with the
single cluster containing all observations the user ‘opens’ clusters, splitting them
in two, and thus effectively moves down through the dendrogram (splitting the ob-
servations into more and more clusters) until the user believes they have reached
a meaningful set of clusters. What the user determines to be a meaningful set of
clusters is usually judged on the basis of the histology of the tissue with the aid of
a H&E stain as described in Section 1.3.1, but this process is subjective nonethe-
less. This combination of unsupervised hierarchical clustering and user-determined
steps is what earns these methods the term ‘semi-supervised’. We will not consider
results from such semi-supervised methods, or any hierarchical clustering methods
at all, instead favouring the k-means approach described below, which can is more
computationally efficient compared to hierarchical methods that compute full den-
drograms.

k-means is an alternative approach to that of hierarchical clustering that at-
tempts to find an optimum partition of the observations into k clusters such that
observations in the same cluster are ‘more similar’ than observations in different
clusters in some sense. We give details on the k-means algorithm in Section 2.2.2.
In comparison to the semi-supervised approaches described above, k-means is an
entirely unsupervised method. We make extensive use of k-means to separate tissue
types in the ovarian cancer data, where we know reasonable values of k to be the
number of different tissue types present, which is easily determined from the H&E
stains.

These different clustering approaches each have advantages and disadvantages,
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and both hierarchical and k-means clustering are used in the analysis of MALDI-
MSI data, as Jones et al. (2012) discuss. We favour the k-means approach, as
its unsupervised nature allows us to repeat many computations in parallel, and
compared to hierachical methods that generate full dendrograms and are difficult to
parallelise it can be more computationally efficient. However it should be noted that
hierarchical approaches have their uses as well, as discussed at length by Alexandrov
(2012) and references therein.

1.6.2 Classification

Classification, sometimes called discriminant analysis, and included in the more
broad term supervised learning, is a field that concerns the differentiation of data
belonging to several classes (Koch, 2013, Chapter 4). Classification can be subdi-
vided into two steps:

• Constructing a classification rule capable of assigning a class label to an ob-
servation. The construction of the rule is done on the basis of data with
known class membership (labels, identifying the class to which each observa-
tion belongs), sometimes called ‘training’ data. This construction step is often
referred to as the ‘training’ or ‘learning’ step.

• Applying a rule to assign a class label to an observation (or observations).
This step can be further subdivided into one of two cases:

– applying the rule to an observation of unknown class membership for
which a real-world decision needs to be made (prediction), or

– applying the rule to observations of known class membership in order to
assess the performance of the rule (sometimes called ‘testing’).

It should be noted that there are a plethora of approaches to classification, and
we only consider a very limited selection, which we describe in Section 4.1. Popular
approaches to classification not represented in this work include random forests (see
Breiman (2001) and references therein) and Support Vector Machines (SVMs) (see
Schölkopf and Smola (1998); Cristianini and Shawe-Taylor (2000) and references
therein). Special consideration of the analysis of binary data has dated back as far
as Cox (1972), and although we consider classification of binary data, we do not
consider classification approaches specifically developed for binary data, although
such approaches do exist (see Lee and Jun (2011) and references therein). Compar-
ison of a broader selection of classification approaches for binary data, such as that
of Asparoukhov and Krzanowski (2001) is needed, but is beyond the scope of this
work. Comparisons of a broader range of classification approaches (without restrict-
ing to binary data) have been made on MALDI-MS data by Wu et al. (2003) and on
cDNA/mRNA microarray data by Dudoit et al. (2002) but an extensive comparison
of classification approaches on MALDI-MSI data specifically is lacking. Extensive
comparisons of classification approaches is lacking, but there has been significant
interest in the classification of MALDI-MSI data in the literature (Casadonte and
Caprioli, 2011). Some research of particular interest from the literature includes:

• Mascini et al. (2015) suggest using Principal Component Analysis (PCA)-
Linear Discriminant Analysis (LDA) for the classification of MALDI-MSI data,
and this is one of the options we consider in Chapter 5.
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• Rauser et al. (2010) consider SVM and Artificial Neuronal Network approaches
to the classification of top-down (protein level) MALDI-MSI data of fresh
frozen tissue — a fundamentally different approach to the bottom up (peptide
level) data from FFPE tissue that we consider.

• Casadonte and Caprioli (2011) discuss the importance of classification applied
to MALDI-MSI data acquired on TMAs constructed from FFPE tissue. The
endometrial cancer data we consider falls in this category, as do the data
considered by Groseclose et al. (2008) and Djidja et al. (2010), who apply
univariate dimension reduction approaches followed by SVM classification and
PCA based classification respectively.

Although there is need for a comparison of a broader range of classification
approaches for MALDI-MSI data, this is beyond the scope of this work — we aim
to fulfil a similar role to the work of Djidja et al. (2010), Mascini et al. (2015) and
Groseclose et al. (2008) on the classification of TMA MALDI-MSI data. Each of
these papers considers the application of a particular classification approach on each
of their respective datasets. We consider the application of a slightly wider variety
of approaches, comparing the results of these approaches and suggesting approaches
that seem to be promising on the basis of these results.

We will restrict attention to two-class problems and linear classification ap-
proaches, but it should be noted that multi-class and non-linear alternatives exist
and are simply not discussed here. As we will only deal with linear two-class classi-
fication, we introduce some notation in Equation 1.5 specific to that scenario, and
which we will use as a framework for comparing classification approaches within
these restrictions.

First, let us consider the canonical Fisher’s LDA for some intuition on linear clas-
sification. In the context of linear classification approaches, Fisher (1936) proposed
to project the data onto a direction which leads to the best separation into two parts
of the one-dimensional projected data. Equivalently Fishers proposal results in a
vector of weights, d, such that the linear combination of the data with this vector
yields one-dimensional quantities which, ideally, fall into two disjoint intervals. In
practice the projected one-dimensional data may not separate completely into sep-
arate intervals, and an offset or scalar value β is used to represent the value that
achieves the best separation.

To state this more formally, first let X denote a d×n data matrix of n observations
with known class labels coded as −1 or +1. All the rules we will consider use the
data X and the associated class labels to ‘train’ a rule by finding a d × 1 vector d
and a scalar β. This rule then assigns class label τ(x) to a d × 1 observation x in
the following way:

τ(x) =

{
+1 if dTx+ β > 0
−1 if dTx+ β < 0

. (1.5)

The notation of Equation 1.5 is repeated in Equation 4.1, where we explore these
ideas in more detail and also present an example application of Fisher’s LDA to
illustrate the intuition behind these concepts. The difference between the classifica-
tion approaches we discuss in Sections 4.1.2, 4.1.3 and 4.1.4 essentially boils down
to different approaches to choosing d and β.
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Chapter 2

DIPPS and Exploratory Analyses

MALDI-MSI can produce large amounts of data (Bonnel et al., 2011). It also has
a uniquely complicated structure. The development of novel statistical tools is re-
quired in order to analyse and interpret MALDI-MSI. Deininger et al. (2008), Bonnel
et al. (2011), Alexandrov et al. (2013), and references therein have suggested a num-
ber of approaches to the exploratory analyses of MALDI-MSI data. Here we suggest
an approach based on feature selection from the binary data. Our approach is based
entirely on the peaklist data. Dealing only with the peaklist data, as opposed to
the full spectrum data, provides a reduction in the quantity of information involved
in computations by several orders of magnitude. Our approach provides easily in-
terpretable results, fast computation, and we suggest it for use as an ‘initial pass’
for quality control as well as a starting point for more in-depth follow-up analyses.
The approach we suggest, and its application discussed in Section 3.1, has been
published as Winderbaum et al. (2015). Here, we take the opportunity to discuss
the ideas in more detail.

This chapter introduces and illustrates methods for:

• Representing MALDI-MSI datasets as data matrices in a way that is robust
and useful, facilitating further analyses.

• Separating meaningful subsets in the data by the use of clustering methods.

• Characterising subsets of the data in an easily interpretable way using the
DIPPS.

Addressing the first of these dot points, binning as a method for representing
MALDI-MSI data in binary binned form is reviewed in Section 2.1, accompanied by
details and related concepts in Appendix A. k-means clustering is reviewed in Sec-
tion 2.2 as an exploratory method that can be used to investigate structure in these
data. The k-means clustering approach we discuss can be seen as an alternative
to the so-called ‘semi-supervised’ methods of Deininger et al. (2008), Alexandrov
et al. (2010) and Bonnel et al. (2011) who cluster MALDI-MSI data using princi-
pal component analysis, hierarchical clustering, and Gaussian mixture models. In
Section 2.3 the binning and k-means methods are illustrated and practical concerns
related to their use are discussed in detail. In Section 2.4 I introduce the DIPPS, and
how it can be used to extend and further investigate the results of k-means clustering
of the binary data. We use the DIPPS in a feature selection approach conceptually
similar to that of Jones et al. (2011), but taking a very different approach in practice,
focusing on the binary data in a way that allows for the result to be visualised in a
single, easy to interpret, image. In Section 2.5 I introduce a novel spatial smoothing
algorithm for binary data that can aid in the analysis and visualisation of binary

25



data and for sparse data can even act as a dimension reduction step. In Section 2.6
I illustrate the use of the DIPPS, as introduced in Section 2.4, for investigating the
ovarian cancer data and demonstrate how the DIPPS is of practical use due to its
intuitive and powerfully simple interpretation.

The methods in this chapter do not only apply to MALDI-MSI data but can
be used more generally on any binary presence/ absence data of the form we will
introduce in Section 2.4.2 as Definition 8. In order to clarify the generality of these
methods, I introduce methods in a general sense and then motivate them with
examples from the MALDI-MSI application in separate sections. For example, I
introduce the k-means method generally in Section 2.2.2 and provide motivating
applications of k-means to MALDI-MSI in Section 2.3.3. Similarly I introduce the
general concepts underlying the DIPPS and related ideas in Section 2.4, motivating
these ideas with examples in the MALDI-MSI context in Section 2.6.

Throughout this chapter I will use the dataset A3 as a motivating example of the
ovarian cancer datasets of Section 1.5.1 when illustrating the application of methods
to MALDI-MSI data. All analyses illustrated on dataset A3 in this chapter have
been duplicated on all the ovarian cancer datasets, but results will often only be
shown for the motivating dataset A3 because the focus of this chapter is on single-
dataset analyses. Comparisons between multiple datasets is the focus in Section 3.1,
where the results for the remainder of the ovarian cancer datasets are summarised
and discussed.

2.1 Binning

In this section I discuss binning as it applies to peaklist MALDI-MSI data. As
discussed in Section 1.6, peaklist data does not fit into the standard statistical
paradigm of ‘variables’ and ‘observations. Binning, in the context that I will use it, is
a method for constructing variables from peaklist data. As mentioned in Section 1.6,
this construction of variables is achieved by discretising the m/z range into intervals
and grouping peaks whose m/z values fall in the same interval. Binning corresponds
to a particular choice of discretisation — equal width intervals that partition the
m/z range. We choose the bin locations arbitrarily, i.e. data-independently, and
as such any dataset we analyse will have the same bins. The data-independent
nature of this binning allows for single-dataset analyses to be extended to multiple-
dataset comparisons in a natural way as the datasets will have the same variables,
the variables having been constructed from the same bins.

Because of its data-independent nature, the binning we suggest (Algorithm A.1)
has the inherent disadvantage of sometimes placing bins in the ‘wrong’ place. Alter-
native, data-dependent, methods can improve on this by using the data to inform
decisions on where to place bins. We introduce a data-dependent discretisation
method and mention some alternatives in Section 3.2, and apply this approach to
the glycan data. However, the extension of such data-dependent methods from sin-
gle to multiple dataset analyses is not as intuitive and can be more computationally
intensive than it is for binning. Comparison of multiple datasets is the main interest
in the ovarian cancer data introduced in Section 1.5.1, and is often important in the
context of MALDI-MSI data more broadly, and so we favour the data-independent
binning approach for these data.

Binning is widely used, but for completeness and to avoid ambiguity I include
explicit definitions in Appendix A, as well as some extended notation that will
be of use in the discussion to follow. One such discussion point is how to make
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sensible choices about the size of bins, which we consider in Section 2.3.1 through
the exploration of the motivating dataset A3.

2.2 k-means Clustering

Often it is of interest to separate subsets of a dataset that are ‘different’ from each
other in some sense. For example in a MALDI-MSI dataset there could be a number
of different tissue types represented. Mass spectra collected from the same tissue
type should, in principle, be relatively similar while spectra from different tissue
types should be relatively less similar. A natural first step in the analysis of such
data is to verify that this intuitive statement is supported by the data — i.e. to pose
the questions: “Is it possible to separate groups of similar spectra?” and if it is,
“How do these groups compare with the different tissue types we expect to see based
on the histology?”. The similarity, or conversely dissimilarity/ distance, between
two spectra is fundamentally important in addressing such questions. We discussed
some of the ideas relating to measuring similarity/ distance in Section 1.6.1, and we
will continue to use these ideas here. There are many approaches to clustering, as
discussed in Section 1.6, and here we review the k-means approach. k-means is an
iterative method that attempts to find a partition of the observations into groups
such that the variability within groups is as small as possible. One of the keys to
measuring such within-group variability is that a representative ‘centroid’ vector can
be found for any set of vectors, and then the ‘variability’ of that set can be measured
by the sum of distances from individual vectors to their centroid.

This section is organised as follows. First I introduce the definition of a centroid,
and its form in the context of some common distances. Secondly I will introduce
the k-means clustering algorithm explicitly, and discuss some of the decisions that
must be made in implementing it. The application of k-means to the ovarian cancer
data will be discussed in Section 2.3.

2.2.1 Centroids

As mentioned above, k-means attempts to find a partition of the observations into
groups such that the variability within groups is as small as possible. The concept of
a distance (Definition 1) gives us a way to quantify the dissimilarity of two vectors.
One way of quantifying the variability in a group of observations is to find a ‘centroid’
vector, representative of that group, and sum the distances from each observation
in the group to the centroid vector.

Definition 4. Centroid: Given a distance D and a d× n matrix X with columns
denoted x•j, the centroid, x∗, of the x•j is

x∗ = arg min
x∈Rd

{
n∑
j=1

D(x,x•j)

}
.

The interpretation of a centroid will vary depending on the distance used, for
example for a set of real-valued vectors:

• When using the Euclidean distance the centroid is the component-wise arith-
metic mean of the vectors.
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• When using the cosine distance the centroid is the mean of the vectors after
having been normalised to be equal length.

• When using the Hamming distance, the centroid is the component-wise median
of the vectors. Note that we limit the domain of the Hamming distance to
binary vectors, see Definition 3.

A centroid need not be unique. The centroid when using the Euclidean distance
is unique, and when the number of vectors in the set is odd, the centroid for the
Hamming distance is unique. The centroid when using the cosine distance however
is only unique up to multiplication by a constant. As mentioned above, the centroid
can be used to quantify the variability in a set of vectors as the sum of distances,
or squared distances, from the centroid. It is interesting to note that such a sum is
unique, even when the centroid is not.

2.2.2 k-means Algorithm

k-means, as described in Koch (2013, Section 6.3), is a method for partitioning n
vectors into k ‘clusters’ such that the vectors in each cluster are similar by some
distance. Here we discuss the implementation of k-means clustering,

Algorithm 2.1. k-means: Given a d × n matrix X with jth column denoted x•j
a distance D, and k initial cluster seeds x∗1[0],x

∗
2[0], . . . ,x

∗
k[0], perform the following

steps at the sth iteration:

1. Calculate cj = arg min
κ

{
D(x•j,x

∗
κ[s−1])

}
for j = 1, 2, . . . , n.

2. Calculate the centroids x∗κ[s] of {x•j | cj = κ} ∀κ = 1, . . . , k, see Definition 4 in
Section 2.2.1.

Stop when x∗κ[s] = x∗κ[s−1] ∀κ ∈ {1, 2, . . . , k}. The cj of the last iteration denote the
resulting cluster membership of the observations x•j.

Algorithm 2.1 can be sensitive to the choice of the initial cluster centroids. For
different choices of initial seeds, the algorithm can converge to different solutions.
This is due to the algorithm getting “stuck” in local minima. There are two ap-
proaches to addressing this:

1. Use Algorithm 2.1 many times with different, random, initial cluster seeds and
use the solution with minimum sum of to-centroid distances.

2. Fix the initial cluster seeds. If the initial cluster seeds can be justified, this is
often an attractive option due to the deterministic reproducibility of results.

Note that when using Euclidean distance in the context of k-means we have actually
used the squared Euclidean distance, but these are actually equivalent for many
purposes. The sum of to-centroid distances as in point 1. above is one of the only
things this choice actually affects in a meaningful way.

2.3 Preliminary Analysis of Dataset A3

In this section I present an exploratory analysis of dataset A3, applying binning and
k-means as reviewed in Section 2.1 and Section 2.2 respectively. In Section 2.3.1 I
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discuss the application of binning in practice, in particular choice of bin size. In order
to interpret the results of k-means clustering, spatial patterns should be considered.
Thus, in Section 2.3.2 I introduce how to represent the results of clustering spatially.
Finally, in Section 2.3.3 I consider the results of k-means clustering on dataset A3.
I use the k-means method as both an exploratory technique and also as a means to
assess different options for proceeding with the analysis of these data. Specifically, I
use the k-means results presented in Section 2.3.3 to discuss two major choices that
I will carry through all analyses that follow for the ovarian cancer datasets:

• The data type to use: binary data, or non-binary data such as intensity, area
or SNR. I conclude that using the binary data is appropriate for the analysis
of the ovarian cancer datasets, although I revisit this choice in Section 4.2 for
the endometrial cancer datasets.

• The distance to use in the k-means clustering: I consider Euclidean, Hamming,
and cosine distances as options and conclude that the cosine distance produces
the most stable results overall.

2.3.1 Choice of Bin Size

The first step in our approach to the analysis of MALDI-MSI peaklist data is the
discretisation of the m/z domain. This discretisation allows for distinct variables to
be constructed from the continuous m/z range by grouping peaks that are nearby in
m/z . Here we will use binning — specifically Algorithm A.1 — for this discretisation.
Algorithm A.1 requires a bin size parameter b to be chosen, which specifies the width
of each m/z region, or bin, in Dalton (Da). Here we explore different choices for the
bin size b, ultimately reaching the conclusion that b = 0.25 is a reasonable choice
for these peptide MALDI-MSI data. Analyses that follow on from this section use
this bin size of 0.25.

Choosing an appropriate bin size is a balance between two competing objectives:

1. Peaks originating from different molecular species should be placed in different
bins. The smaller the bin size, the more likely we are to achieve this objective.

2. Peaks originating from the same molecular species should be placed in the
same bin. The larger the bin size, the more likely we are to achieve this
objective.

The same molecular species should not have more than one peak per spectrum, so we
can assume that two peaks from the same spectrum should originate from different
molecular species. We can use the minimum distances between peaks within the
same spectrum to estimate the minimum distance between peaks from different
molecular species. If we then select a bin size smaller than the minimum distance
between peaks originating from different molecular species, we are guaranteed to
achieve the first objective. We will then choose a bin size as large as possible in
order to maximise the chance of achieving the second objective as well.

In order to consider the distances between peaks within spectra more closely, let
us denote the set of these intra-spectrum differences

D =
{
m(i)j −m(i−1)j | i ∈ [2, Nj], j ∈ [1, n]

}
, (2.1)

where Nj denotes the number of peaks in spectrum j and m(i)j denotes the m/z of
the ith peak in spectrum j, where the peaks are sorted in increasing order of m/z
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Figure 2.1: Plot of dt on the y-axis, as defined in Equation 2.2, against t on the
x-axis for dataset A3.

within each spectrum. Let dt be the number of intra-spectrum differences m ∈ D
below a threshold t, so

dt = |{m ∈ D|m < t}|, (2.2)

given the notation for D in Equation 2.1. Note that dt in Equation 2.2 denotes the
cardinality or size of the set {m ∈ D|m < t}. Figure 2.1 shows dt for small values
of t in the dataset A3.

Although these data are of very high quality, allowing for a small rate of false
positive peaks is still reasonable. In this context, a false positive peak would be a
peak resulting from instrument or chemical noise — not originating from a molecular
species in the sample — or appearing at an incorrect m/z . If we consider that D
contains 1287670 differences, we see that d0.25 = 6 is a comparatively tiny number,
and so it is reasonable to say that using a bin size of 0.25 (almost) achieves the first
objective of peaks from different molecular species always occurring in different bins.
Consideration of Figure 2.1 leads to the impression that there is an ‘elbow’ in the
cumulative number of differences (dt) at approximately 0.25, meaning that if a bin
size is increased much beyond 0.25, the number of intra-spectrum peak-pairs that
will be in the same bin will rapidly increase. Given these two heuristic arguments,
we conclude that using a bin size of 0.25 is a reasonable compromise between the
two competing objectives. Despite this justification for the choice of bin size, all
analyses that follow in this chapter have been replicated with a range of bin sizes,
and these results are quite robust to changing the choice of bin size within the range
0.05− 3.

It is interesting to note how this heuristic approach relates to the discussion we
include in Section A.4 of Appendix A, specifically:

• Definition 18 corresponds to no two peaks from the same spectrum being
placed in the same bin.

• Definition 19, which guarantees Definition 18 for bin sizes less than b∗, in this
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context is
b∗ = arg max

t
{dt|dt = 0} = 0.069,

i.e. the maximum t such that dt = 0, as seen in Figure 2.1.

2.3.2 Visualising spatial distribution of an imaging dataset

As discussed in Section 1.4, MALDI-MSI is the process of acquiring spectra from
many spatially distributed points across the surface of a tissue sample. In order to
interpret results we will want to represent the results spatially. Representing results
spatially will allow us to compare results with histological features; for example find-
ing differences between tumour tissues and healthy tissues as these will be spatially
separated and visible in the histology. Figure 2.2 shows the spatial distribution
of the positions from which spectra have been acquired in dataset A3. In dataset
A3, and in all the MALDI-MSI datasets we consider, spectra were collected from a
regular grid across the tissue. In large droplet analyses, such as that considered by
Gustafsson et al. (2015), it is common for positions to be unevenly distributed across
the tissue, in order to represent the tissue types being targeted. However, in the
high lateral resolution spray approach to MALDI-MSI that we consider, the whole
tissue section is systematically mapped and so the locations from which spectra
are acquired are systematically distributed in a regular grid. I will use the spatial
distribution of Figure 2.2 to visualise results in the following sections. For exam-
ple, the result of clustering is a cluster membership for each spectra in the dataset.
These types of results can be visualised spatially by plotting the pixels shown in
Figure 2.2, and colouring them according to the cluster membership — pixels of
the same colour belonging to the same cluster, pixels of different colours belonging
to different clusters. Such a plot can then easily be compared with stained tissue
images, and relationships between the cluster membership and tissue morphology
inferred, as in Figure 2.6.

In Section 2.3.1 I briefly mentioned the number of adjacent peak pairs within
spectra in dataset A3, d∞ = 1287670. dt was defined in Equation 2.2. This number
can be seen to originate from the fact that dataset A3 consists of 1301720 peaks
detected over 14050 spectra, as noted in Table 1.2, and d∞ = 1301720 − 14050. In
fact, spectra were collected from 14059 locations, but no peaks were detected in
9 of these spectra, also noted in Table 1.2. In the context of cluster membership
results these 9 empty spectra mentioned above would be greyed out as they are not
assigned a cluster membership. If you look very closely you will notice 9 interior
grey pixels in Figure 2.2 — these correspond to the 9 so-called ‘empty’ spectra in
which no peaks were detected.

2.3.3 Results of k-means clustering

In this section I will present results of k-means clustering, as described in Sec-
tion 2.2.2, for dataset A3. I will use these k-means clustering results to compare
and discuss the choice of which form of the data, binary or various non-binary forms,
and which distance to use. In order to conduct these k-means clusterings a number
of other choices must be made, specifically:

• Bin size,

• Number of clusters,

• Initial cluster seeds, and
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Figure 2.2: Spatial distribution of spectra in dataset A3. Coloured pixels indicate
X-Y coordinates from which spectra were collected. The zoom-in highlights that
the coloured region consists of square pixels arranged in a regular grid, each pixel
at X-Y coordinates where a spectrum was collected.
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• How to deal with formation of empty clusters.

and so first we will provide a brief discussion for our choices regarding these four
points.

In Section 2.3.1 I discussed the reasoning for choosing a bin size of 0.25, and I
continue with this choice of bin size here and in all following analyses. Nevertheless,
we repeated all analyses with a variety of bin sizes in the range 0.05–3 in order
to verify robustness to small changes in bin size, and saw no noticeable effect. It
has previously been shown that four is an appropriate number of clusters for these
data — see Koch (2013, Example 6.12, Section 6.5.3). Based on the histology, as
shown in the H&E stain of Figure 2.6, it is expected that three broadly different
tissue types should be observed in this dataset, corresponding to cancer, adipose
and stroma. Off-tissue spectra makes for four broadly different spatial regions.
I will present results here using number of clusters k = 4. Analyses where the
value of k is varied have also been considered, but are omitted for brevity. In the
interest of reproducibility I choose initial cluster seeds from the observations in
a deterministic, automated manner that selects observations that achieve extrema
when projected into the first few principal component directions. PCA is described
in more detail in Section 4.3.1. Similarly to the other choices, the robustness of
results was established by considering clustering on the basis of different seeds —
for example, the clustering results shown in Winderbaum et al. (2015) are generated
by performing 100 k-means clusterings in parallel each with initial cluster seeds
chosen from the observations at random, and using the clustering that resulted in
the lowest sum of to-centroid distances of the 100 resulting clusterings. Sometimes all
observations will be allocated to a strict subset of clusters in step 1. of Algorithm 2.1,
causing {x•j | cj = κ} to be empty for some κ. This is a problem, as it causes
Algorithm 2.1 to fail at the following step 2. We solve this problem by introducing a
‘singleton’ cluster of a single observation corresponding to the observation with the
greatest to-centroid distance whenever an empty cluster is formed. This solution
also guarantees that Algorithm 2.1 will always produce a cluster membership with
exactly k clusters, and is implemented in the MATLAB kmeans function.

As discussed in Section 2.3.2 I will represent the results of k-means clustering
as spatial maps of the cluster-membership using colours to distinguish clusters —
each spectrum represented as a coloured pixel at its X-Y coordinates. The results
of k-means clustering on the binary representation of the data, using three different
distances, are shown in Figure 2.3. The results of k-means clustering on three
different types of non-binary data are shown in Figure 2.4 using the Euclidean
distance, and in Figure 2.5 using the cosine distance.

We expect cluster memberships to be spatially localised due to the nature by
which the data was collected — adjacent spectra are collected from adjacent areas
of tissue, and are expected to be more similar than spectra from arbitrary locations.
It can be seen in Figure 2.3 that the clusters produced using the binary data are
quite spatially localised. The clusters produced using the Euclidean and cosine on
the binary data (Figure 2.3) agree well and seem to, despite a small amount of
“speckling”, match up with the morphology of the tissue as shown by the H&E
stain in Figure 2.6, colours roughly corresponding to: cancer , stroma , adipose ,

and off-tissue . Interpretation of the clusters produced by the Hamming distance is
less clear, combining most of the cancer regions with the off-tissue. The Hamming
distance could be detecting the cancer tissue as being similar to the off-tissue regions
due to the spectra acquisition being poor on cancer areas of tissue and less signals
being detected — causing there to be similarity between the two by their shared

33



50

100

150

200

350 400 350 400 350 400

(a) (b)

5mm

Figure 2.3: (a) H&E stained tissue section with arrows indicating the four visible
tumours and (b) The results of 4-means clustering (Algorithm 2.1) on the dataset
A3. Analysis was done using the cosine (left), Euclidean (centre) and Hamming
(right) distances on the binned (bin size 0.25) binary data. Apart from minor
speckling effects, spatially localised clusters that well separate the main tissue types
are apparent in all three clustering results.

absence of many signals. We pursue the discussion of the cancer regions being
characterised by the absence of certain signals further in Section 2.6. Although the
Euclidean and cosine clusterings appear to be similar based on this visual inspection
of Figure 2.3, comparisons across the remainder of the ovarian cancer datasets show
that the cosine distance clustering tends to pick out regions corresponding to tissue
types more consistently, and I will continue to use the cosine distance in further
analyses. The results of applying the cosine clustering to the remainder of the
ovarian cancer datasets are discussed in Section 3.1.

We are interested in comparing the results obtained from binary and non-binary
data. Figure 2.4 shows the results of k-means clustering by Euclidean distance
on three variants of non-binary: intensity, area, and SNR data. By considering
Figure 2.4, it is immediately clear that the clusters produced using the Euclidean
distance on the non-binary data fail to separate the tissue types known to be present
in the tissue. This failure strongly contrasts the results on the binary data shown
in Figure 2.3. At first glance this may seem worrying, as the non-binary data con-
tain strictly more information than the binary representation. The fact that the
non-binary data fail to separate tissue types could be a cause of serious concern
about data quality. On further consideration however, the fact that the binary data
contains a strict subset of the information in the non-binary data, and successfully
separates tissue types, seems to indicate that the additional information contained
in the non-binary data adds ‘noise’ that obscures the information capable of sep-
arating tissue types. Methods for the removal of this unwanted ‘noise’ could be
considered, such as that discussed in Section 4.4 for the endometrial cancer data.
For the ovarian cancer data however, using the binary representation of these data
bypasses the issue of noisy measurements, and we will consider the binary data in
further analyses. The results of k-means clustering using the cosine distance on the
same three types of non-binary data are shown in Figure 2.5. The cosine distance
results of Figure 2.5 show much improvement over their Euclidean distance counter-
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Figure 2.4: (a) H&E stained tissue section with arrows indicating the four visible
tumours and (b) The results of 4-means clustering (Algorithm 2.1) on the dataset
A3. Analysis was done using the Euclidean distance on binned (bin size 0.25);
intensity (left), area (centre) and SNR (right) data. All three clustering results
show spatially de-localised clusters. Although the clustering results show various
degrees of success at separating certain features of the tissue, all fail to separate the
main tissue types present in the tissue section.
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Figure 2.5: (a) H&E stained tissue section with arrows indicating the four visible
tumours and (b) The results of 4-means clustering (Algorithm 2.1) on the dataset
A3. Analysis was done using the cosine distance on binned (bin size 0.25); intensity
(left), area (centre) and SNR (right) data.

parts shown in Figure 2.4, able to separate some of the tissue types. The non-binary
cosine distance results of Figure 2.5 still separate tissue types worse than the binary
data results of Figure 2.3, despite the cosine distance showing much improved per-
formance in comparison to the Euclidean distance. The performance of the cosine
distance in Figure 2.5 contributes to our decision to use the cosine distance, as well
as the binary data, in further analyses.
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2.4 Feature Extraction for Binary Data

Often we know that a given subset of data is particularly interesting or has some
meaningful interpretation. For example, as in Section 2.3, we may discover that
a cluster seems to correspond to cancerous tissue, and want to further investigate
it. It can be desirable to identify variables that distinguish or characterise such a
subset. In this section we introduce our approach to identifying such variables, as
published in Winderbaum et al. (2015), specifically:

• The Difference in Proportions of Occurrence Statistic (DIPPS).

• A heuristic cut-off value for the DIPPS that allows variable ranking by DIPPS
to be used to automate feature extraction of meaningful subsets of variables.

In Section 2.6 we will demonstrate and further motivate these concepts through their
application to dataset A3, including how easily interpretable and concise heatmap
visualisations of such selected subsets of variables can be constructed and used for
the interpretation of MALDI-MSI data. First I introduce some notation for subsets
of data in Section 2.4.1. Then I introduce the concepts relating to the DIPPS as
summarised above in Section 2.4.2.

2.4.1 Subset Notation

Given that rows and columns of matrices are usually assigned a unique index between
1 and n, where n is the number of rows or columns respectively, using an n-index
subset (Definition 5) to denote subsets of rows or columns is convenient.

Definition 5. n-Index Subset: A set C is an n-index subset if and only if C ⊂
{1, 2, . . . , n}.

A useful duality exists between n-index subsets and binary vectors of length n,
see Definition 6. This dual notation will be useful for writing many subset operations
in a concise matrix form.

Definition 6. Binary Vector Dual (of an n-Index Subset): Let C be an n-
index subset as in Definition 5. c is the binary vector dual of C if c is a length n
binary vector with the value 1 at every location whose index is contained in C and
value 0 elsewhere.

Binary vectors are prominent in this work, and it is interesting to note that
operations on these binary objects could also be formulated in terms of their set dual
and boolean algebras, but this idea is not explored here as it does not contribute to
the objective of our work.

Let the n-index subset C correspond to a subset of the columns of a data matrix
X. There exists a transformation matrix such that when post-multiplied by X, the
resulting matrix is the corresponding sub-matrix of X, see Definition 7.

Definition 7. Subset Transformation Matrix: Let C be a n-index subset as in
Definition 5. Let c be the binary vector dual of C as in Definition 6. Let the number
of ones contained in c be denoted nC, and let the nC non-zero entries of c occur at
indices ik for k = 1, 2, . . . , nC.

The subset transformation matrix Tc for the n-index subset C is the n×nC binary
matrix such that the kth column of Tc contains the value 1 in the ithk position and
zeros elsewhere.
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Notice that
c = Tc1nC×1.

We use this n-index subset notation to represent sub-matrices.

2.4.2 DIPPS

In this section we introduce DIPPS and related concepts in a general context. We
motivate these ideas briefly and in a general setting in order to emphasise that the
DIPPS approach is general and could be applied to any data of a presence/ absence
binary type. Often MALDI-MSI observations will correspond to spectra, variables
to m/z bins. In the particular application we will use to illustrate these ideas —
the ovarian cancer data of Section 1.5.1 — the subset of interest will usually be the
cancer tissue, its complement being surrounding non-tumour healthy tissues and off-
tissue spectra. These ideas and how they can be interpreted in these specific cases
are explored in more detail in Section 2.6, but in this section we aim to introduce
the concepts in general without this specific context.

First we define a couple of terms.

Definition 8. Presence/ absence data is any binary data whose two values,
numerically coded one and zero, can be interpreted as the presence or absence of
some characteristic.

Binary binned MALDI-MSI data as produced by Algorithm A.1 is presence/ ab-
sence as per Definition 8 — the two values coding for the presence/ absence of some
characteristic (a peak) in a given variable (m/z bin) and observation (spectrum).

A natural question to ask of presence/ absence data is ‘how many observations
demonstrate presence of a particular characteristic?’. Proportions of occurrence are
a natural way to measure this in a way such that allows sets of different sizes to be
comparable.

Definition 9. Proportion of Occurrence The mean of a set of presence/ absence
observations can be interpreted as the proportions of the observations in which the
characteristic is present.

In the same way that proportions of occurrence measure how many observations
exhibit presence of a characteristic, DIPPS measures the degree to which a subset
of observations differs from its complement in the proportion of occurrence of some
characteristic. Let us consider a d × n presence/ absence data matrix X in which
we are interested in finding variables that distinguish between a particular subset
of observations, XTc, and the rest of the data, XT(1d×1−c). DIPPS is the difference
between the proportions of occurrence in these two subsets of the data.

Definition 10. Difference in Proportions of Occurrence Statistic (DIPPS)
Let X be a d× n binary data matrix. Let C be an n-index subset with binary vector
dual c and size nC. The DIPPS for a row of X is the corresponding element of the
d× 1 vector

ρ(C) =

(
1

nC
Xc
)
−
(

1

n− nC
X (1d×1 − c)

)

The first term of ρ in Definition 10, 1
nC
Xc, is the vector of proportions of oc-

currence within the subset of interest, XTc. The second term, 1
n−nC

X (1d×1 − c),
is the vector of proportions of occurrence for its complement, XT(1d×1−c). If you
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think of the ‘presence’ value as predicting membership in the subset of interest of
an observation, then these two terms can be thought of as measures of sensitivity
and specificity respectively. From this prediction perspective, each of the d DIPPS
in Definition 10 is a combined measure of both sensitivity and specificity for the
corresponding variable. This can be thought of as a cost function for which false
positives and false negatives are weighted equally, and this special equally-weighted
case is sometimes called the informedness — see Powers (2011); Fawcett (2006) and
references therein. Variables, or rows of X, with a higher proportion of occurrence
in the subset of interest than in its complement will have positive DIPPS. Variables
with a higher proportion of occurrence outside of the subset of interest than in it
will have negative DIPPS. These variables can be referred to as positive indicators
(where the ‘presence’ value predicts membership) and negative indicators (where
the ‘absence’ value predicts membership) for the subset of interest C respectively.
A variable that has the same proportion of occurrence in the subset of interest as
outside of it will have a DIPPS of zero.

The DIPPS of Definition 10 provides an intuitive ranking of variables by their
ability to characterise/ predict a given subset of observations C. Choosing a cut-off
value allows us to select a subset of variables using this ranking by selecting variables
with DIPPS above the cut-off. We suggest a heuristic for choosing an appropriate
cut-off in Definition 12, but first we need some notation for which variables are
selected using a given cutoff, and for that we use the concept of a DIPPS-template.

Definition 11. DIPPS-Template: Let C be an n-index subset, and ρ be the cor-
responding vector of DIPPS as in Definition 10. For a given cut-off value a, the
positive (negative) DIPPS-template ta+ (ta−) is a d× 1 binary vector, each element
of which is 1 if the corresponding element of ρ is ≥ a (≤ −a) and 0 otherwise.

Note that although ρ, ta− , and ta+ of Definition 11 are functions of C, I omit this
dependence as in this context C is assumed to be fixed. Without loss of generality I
will discuss positive DIPPS-templates. Given a cutoff value a for the DIPPS ranking
of the variables in some d×n data, the positive DIPPS-template is the d× 1 vector
of indicator variables for the DIPPS of the corresponding variables being above the
cutoff a. The variables selected are those whose proportion of occurrence in C are
least a greater than the proportion of occurrence in the complement of C. One way to
interpret this is that a randomly chosen observation from C is ‘at least a more likely’
to exhibit presence than a randomly chosen observation from the complement of C.
Extending this thinking, the DIPPS-template can be thought of as a ‘representative’
observation from C— exhibiting presence in variables for which the DIPPS is at least
a. Recalling the concept of a centroid from Section 2.2.1, which is a general approach
to constructing a ‘representative’ vector for a set of vectors, but not restricted to
being binary in general. The idea behind the heuristic DIPPS-threshold is that we
choose a such that these two approaches to constructing representative vectors are
the most similar — i.e. so that the DIPPS-threshold is as similar to the centroid of
C as possible.

Definition 12. DIPPS-Threshold: Given: a d × n binary data matrix X; an
n-index subset C (with binary vector dual c); and a distance D (Definition 1), let c
denote the centroid (Definition 4) of the subset of interest (XTc), then for positive

38



(negative) indicators, the DIPPS-threshold a+
∗ (a−∗ ) is defined as:

For positive indicators : a+
∗ = arg min

a

{
D
(
c, ta+

)}
For negative indicators : a−∗ = arg min

a

{
D
(
c,1d×1 − ta−

)}

The DIPPS-threshold of Definition 12 provides a natural way of obtaining a set of
positive indicators for C (variables with DIPPS≥ a+

∗ ) and a set of negative indicators
for C (variables with DIPPS ≤ −a−∗ ). These sets of variables are identified by the
entries of ta+∗ and ta−∗ equal to one respectively. These sets are useful as they quickly
and easily provide a shortlist of variables that distinguish the subset of interest and
can be investigated further in follow-up analyses. We explore the use of DIPPS in
generating shortlists of variables for follow-up analyses in Section 2.6. In Section 3.1
we consider another use of DIPPS — comparing the sets of indicators generated
from different datasets in order to separate within-patient from between-patient
variability.

The DIPPS-threshold of Definition 12 has interesting properties when particular
distances are used, but in general attempts to maximise the similarity between the
DIPPS-template of Definition 11 and the centroid of the subset C of the data. If we
begin with the empty set the corresponding DIPPS-template would be t∞+ = 0d×1.
Usually adding the variable with the highest DIPPS, and then the second highest,
and so on decreases the distance between the DIPPS-template and the centroid
c. Eventually adding more variables will begin increasing this distance, and the
DIPPS-threshold of Definition 12 attempts to find the cutoff, and corresponding
DIPPS-template/ subset of variables that achieves the local optimum for which the
template to centroid distance is minimised.

In order to clarify the concept of the DIPPS-threshold of Definition 12, I will
briefly consider how it applies when the cosine distance is used. The cosine distance
is the distance we focus on following from the discussion of Section 2.3.3, and so this
choice will be particularly relevant. I also limit attention to the positive indicator
case a+

∗ , as this will be the one we focus on and as the positive indicator case is
equivalent to the negative indicator case up to swapping ones/ zeros or presence/
absence.

When the cosine distance is used (i.e. D = Dcos),

Dcos

(
c, ta+

)
= 1−

tTa+c

||c||.||ta+||

Let na denote the number of non-zero entries of ta+ and let b2 < b1 such that
nb2 = nb1 + 1. As the cutoff a becomes smaller, changing from b1 to b2, Dcos

(
c, ta+

)
will decrease if (tb+2 −tb+1 )Tc <

(
tT
b+1
c
)(√

nb2

nb1
− 1
)

and will increase if (tb+2 −tb+1 )Tc >(
tT
b+1
c
)(√

nb2

nb1
− 1
)

. The left-hand side of these expressions is the entry of the

centroid c corresponding to the variable added when changing the cutoff from b1

to b2. The right-hand side is a function of the total number of variables selected

so far, nb1 . As nb1 increases,
(√

nb2

nb1
− 1
)

approaches zero and when this term

becomes sufficiently small reducing the cutoff a further only increases the distance
Dcos

(
c, ta+

)
. This limiting behaviour is what allows for a local minima to be found.
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2.5 Spatial Smoothing for Binary Data

All of the methods introduced so far completely ignore the spatial information
present in MALDI-MSI datasets. One way to incorporate such distance meta-data
is through a spatial smooth, however when smoothing binary data it is desirable to
maintain the binary form of the data through the smoothing process. Many com-
mon smoothing algorithms, such as most kernel and polynomial spline smooths for
example, do not preserve the binary nature of the data. In this section I propose a
spatial smooth (Algorithm 2.2) that preserves the binary nature of the data through
use of cellular automata. For a broader perspective and history on cellular automata
see Mitchell et al. (1996); Wolfram (1984) and references therein. The approach I
propose to smoothing is to our knowledge novel, and has now been published in
Winderbaum et al. (2015).

We represent the spatial information associated with a d×n binary data matrix
X as a n × n distance meta-data matrix D, whose rows and columns correspond
to the same observations represented by the columns of X. A distance meta-data
matrix D is a symmetric matrix such that the (i, j)th entry of D is the value of
a distance D between the ith and jth observations in the dataset, i.e. D(x•i,x•j).

This implies that the diagonal of D is filled with zeroes, as D(x•i,x•i) = 0 ∀i.
In MALDI-MSI data, we will choose the distance to be the Euclidean distance be-
tween the X-Y coordinates of spectra, so the physical distance between the spatial
locations of two spectra. We use the lateral resolution, i.e. the minimum distance
between two spectra or the width of a pixel in spatial maps such as in Section 2.3.2,
as the unit of measurement. The smooth we propose in Algorithm 2.2 looks at a
spatial neighbourhood around each observation or spectrum and if enough of the
neighbouring observations differ the value is changed to agree with the neighbour-
hood. This process is then repeated iteratively until a stable state is found in which
every neighbourhood meets the minimum agreement criteria. This iterative process
thus guarantees the resulting data will meet a minimum level of ‘smoothness’.

Algorithm 2.2. Spatial Smooth: Given: a smoothing parameter 0 ≤ τ < 1
2
; a

distance cutoff δ > 0; a stopping point k̃; a binary d×n data matrix X, and a n×n
distance meta-data matrix D. Initially let X(0) = X. For k = 1, 2, . . . construct X(k)

by the following steps:

1. For all j, find the 1× n binary vector cj such that each element of cj is one if
the corresponding element of the jth row of D is ≤ δ and zero otherwise.

2. x
(k)
ij =


x

(k−1)
ij if

(
1− x(k−1)

ij +
(

2x
(k−1)
ij − 1

)
x
(k−1)
i• cTj −x

(k−1)
ij

11×ncTj −1

)
> τ

1− x(k−1)
ij if

(
1− x(k−1)

ij +
(

2x
(k−1)
ij − 1

)
x
(k−1)
i• cTj −x

(k−1)
ij

11×ncTj −1

)
≤ τ

Stop when either k = k̃ or X(k) = X(k−1). When one of the stopping conditions
is reached, X(k) is the spatially smoothed data.

Remarks on Algorithm 2.2:

• The term

(
1− x(k−1)

ij +
(

2x
(k−1)
ij − 1

)
x
(k−1)
i• cTj −x

(k−1)
ij

11×ncTj −1

)
in step 2. is the propor-

tion of observations in a δ-neighbourhood of the jth observation x
(k−1)
•j that

have the same value as x
(k−1)
•j for their ith variable. If there is an insuffi-

cient proportion of neighbouring similar observations (specifically < τ), the
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value x
(k−1)
ij is ‘smoothed’ to agree with the majority of its neighbours, i.e.

x
(k)
ij = 1 − x(k−1)

ij . Otherwise, x
(k−1)
ij remains unchanged at the kth step, i.e.

x
(k)
ij = x

(k−1)
ij .

• We choose δ =
√

2 which results in a range 1 Moore neighbourhood. See
Gray (2003). This neighbourhood is used in the cellular automata literature
including Conway (1970). It is worth noting that acquiring the range 1 Moore
neighbourhood by using the Euclidean distance and δ =

√
2 is equivalent to

using the Tchebychev distance (L∞ or sup-norm), and δ = 1 so long as the
observations lie on a regular grid. It is important to deal with the special
case of empty δ-neighbourhoods, in which case we leave the data unmodified.
However it is always possible to select δ sufficiently large such that there
are no empty δ-neighbourhoods, and in our case δ =

√
2 is sufficiently large

to satisfy this condition. Alternative neighbourhoods could be selected by
choosing different combinations of cutoff δ and distance D, but we have not
explored these possibilities.

• The smoothing parameter τ defines the proportion of neighbouring spectra
needed to agree in order for the value of an observation to remain unchanged
at any given step, as discussed in the first point above. Small values of τ
smooth less (τ = 0 leaves the data unmodified), while larger values smooth
more. The limit τ → 1

2
results in maximum smoothing, and is equivalent to the

intuitive median smooth. The median smooth tends to yield over-smoothed
data in the case of MALDI-MSI data, and often fails to converge. We choose
an intermediate smoothing parameter, τ = 1

4
, for these analyses. For data

on a regular grid results will not significantly change if τ is within the same
1
8
-wide interval, as changing τ within these intervals will affect only spectra on

the boundary of the acquisition region (spectra with less than 8 neighbours).
The values 1

8
and 3

8
could also be used, but in Section 2.6 and Section 3.1 we

present results using the intermediate value τ = 1
4
.

• Alternative smoothing options include kernel methods (Wand and Jones, 1995)
which apply to the more general class of continuous data. These methods
typically produce continuous values when applied to binary data, for which
there is no clear interpretation. Our method produces binary smoothed data
— maintaining the interpretability of the binary values. As one of the main
strengths of using the binary data is its simple interpretation as ‘presence/
absence’ data, the ability to preserve this interpretation is important.

• At each smoothing iteration k, variables are smoothed independently, and
within each variable all observations are smoothed simultaneously at each
step. This means that it is possible to parallelise the smoothing algorithm,
making relatively efficient use of computational resources.

• In practice the stopping point k̃ is not usually necessary, as typically conver-
gence is reached in < 20 iterations. However it is good practice to include k̃
in case convergence is not reached, as we cannot easily guarantee convergence.
An alternative use for k̃ is to improve computation speed — by choosing a
small k̃, such as 2 or 3 for example, computation could be performed very
quickly.
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2.6 Characterisation of Cancer in Dataset A3

Here we illustrate the methods and ideas introduced in Sections 2.4 and 2.5 by
applying these ideas to the motivating dataset A3 from the ovarian cancer data of
Section 1.5.1. I will demonstrate the usefulness of these methods in the exploration
of MALDI-MSI data, focussing on the interpretation of results. More specifically I
will show how DIPPS can be used to find variables (m/z bins) that are important
in distinguishing clusters, how such information can be presented as heatmaps and
how these heatmaps visualise clustering results in a way that is easier to interpret
than simply plotting the cluster membership.

Continuing on from the analyses of dataset A3 in Section 2.3, I will consider the
4-means clustering by cosine distance of the binary binned data, shown in Figure 2.6
side-by-side with an image of the same section of tissue after H&E staining. As
mentioned in Section 2.3, a notable feature of Figure 2.6 is that through comparison
with the histological staining, experts concluded that the clusters roughly correspond
to the different tissue types present, specifically: off-tissue , adipose , cancer , and

stroma . In Section 2.6.1 I begin with some discussion and exploratory analysis of
how presence/ absence data and proportions of occurrence, as in Definition 8 and
Definition 9 respectively, apply in this context. I will then consider the extraction
of variables by use of DIPPS in Section 2.6.2. Finally in Section 2.6.3 I will show
how heatmaps representing these extracted variables can provide a representation
for the clustering results that allows for intuitive and meaningful conclusions to be
easily drawn.
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(a) (b)
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Figure 2.6: (a) H&E stained tissue section with arrows indicating the four visible tu-
mours and (b) cluster membership resulting from 4-means clustering (Algorithm 2.1)
by cosine distance on the binary binned (bin size 0.25) A3 data (Algorithm A.1)
with smoothing (τ = 0.25, right) and without smoothing (τ = 0, left). Note that
the left image in (b) reproduces the left-most image in Figure 2.3.

2.6.1 Proportions of Occurrence

In this section we present exploratory analyses of dataset A3 in order to develop
familiarity with properties of these data so that we might interpret further results
in appropriate context.
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I begin by considering the distribution of proportions of occurrence (Definition 9)
in the form of a histogram, as shown in Figure 2.7. The proportion of occurrence
for each of the 4294 variables of the binned data were calculated, and Figure 2.7
shows a histogram of these proportions for the 4294 variables. Figure 2.7 shows a
heavily right skewed distribution, with a large number of variables having a very low
proportion of occurrence. This type of heavily right skewed distribution is typical
for MALDI-MSI datasets such as this. To be explicit about the degree of right skew,
3271 or ∼ 76% of 4294 variables have a proportion of occurrence less than 0.005 or
0.5% — that is to say that ∼ 76% of non-empty bins contain peaks in less than 71
of 14050 spectra. A natural question to ask is:

“What happens to the clustering results if I remove these low-occurrence bins?”

If we construct a new data matrix X∗ from X by removing the rows of X correspond-
ing to bins with proportion of occurrence < 0.005 and perform a 4-means clustering
on the modified matrix (using the same starting points) the results are almost in-
distinguishable — differing from the clustering results on the full unsmoothed data
shown in Figure 2.6 by only 10, or 0.07%, of 14050 pixels. A continuous range
of thresholds for cutting off the proportions of occurrence was considered but this
illustrative example is sufficient to demonstrate the point that most of the low
proportions of occurrence bins can be removed without significantly affecting the
clustering.

0.00

0.25

0.50

0.75

0.00 0.25 0.50 0.75 1.00

Figure 2.7: Histogram of the proportions of occurrence of the bins in the binary
binned (bin size 0.25) A3 data. Proportion of occurrence is represented on the
x-axis, relative frequency (relative to the total of 4294 bins) on the y-axis. The
distribution shown is fairly typical for this type of data – heavily right skewed.

Low proportion of occurrence variables seem not to be important in successfully
distinguishing tissue types by clustering. A large number of variables have a low pro-
portion of occurrence, and this suggests that there exists a small subset of variables
that can effectively distinguish tissue types. In order to understand what distin-
guishes tissue types in these data and identify potential subsets of variables that
can do so, let us begin by considering the high proportion of occurrence variables.

43



Figure 2.8 shows the spatial distribution of occurrence for each of the 8 highest
proportion of occurrence variables. The m/z values that these images correspond to
and their proportions of occurrence are included in the figure caption. Similarly to
the representation of cluster-membership, I use the spatial distribution discussed in
Section 2.3.2 to visualise the occurrence in a variable by using colour to distinguish
the binary presence / absence values in the variable of interest.

As mentioned in Section 1.4 four internal calibrants (Gustafsson et al., 2012) were
sprayed onto the tissue during sample preparation, for mass-calibration purposes.
These calibrants should appear at known m/z values equally across the entire tissue
section. Figure 2.8 (a), (b), (d), and (i) correspond to these calibrants. Figure 2.8
(c) and probably (g) are similarly trypsin autolysis products resulting from the
trypsin sprayed evenly onto the tissue during sample preparation. Note that the
most common trypsin autoloysis product, at an m/z of 842, is not observed here.
This is because the low end of the mass range used for the acquisition of these
data was 1000, meaning any signals at an m/z less than 1000 where not measured.
The decision to restrict the mass range in this way was largely motivated through
iterative optimisation of the method as often chemical noise in the low mass region
can lead to poor spectrum quality. Notice how the last of the calibrants, Figure 2.8
(i), exhibits a systematic absence for high Y-coordinate values (that is in the lower
part of the image) and thus is not amongst the very highest proportion of occurrence
m/z bins. Such a systematic absence indicates a problem, and the detection of such
problems is part of the reason these internal calibrants are included — in order to
further improve the methods used to acquire these data. This particular problem
has as yet eluded explanation. This absence could potentially be an example of
what I will refer to as ‘false negative’ measurements. These ‘false negatives’ could
be caused by insufficient matrix being deposited, resulting in insufficient ions being
produced and no peaks being detected. Peaks being mistaken for noise by the peak-
picking algorithm could also account for false negatives. Essentially any situation
where the molecule of interest is present in the sample, but not detected as a peak
in the mass spectrum.

Figure 2.8 (f), (h), and (j) are interesting when considering the differentiation
of tissue types, as their spatial distributions, visually, seem to match that of the
cancer cluster in Figure 2.6. The visual match between the occurrence in the bins
of Figure 2.8 (f), (h), and (j), and the cluster membership of Figure 2.6 is that of
a negative indication for the cancer cluster — that is the absence of peaks in those
bins seems to correspond to the cancer cluster. Positive indicators of cancer are far
more useful than negative indicators, for two reasons:

• As briefly mentioned above, there is the issue of what I refer to as ‘false
negative’ measurements, which make negative indicators somewhat dubious.
‘False positive’ measurements however are very rare, due to the fundamental
nature of the data as described in Chapter 1, and so positive indicators are
much more reliable.

• More importantly however, positive indicators for cancer are more useful from
a biochemical perspective, as they have more potential as possible diagnostic
and predictive tools, as tests for positive indicators can be devised with rel-
ative ease. Developing tests for the absence of something is somewhat more
complicated and difficult, and the results would typically be less useful or
informative.

So although these three negative indicators for the cancer are interesting, and could
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Figure 2.8: Occurrence maps for high occurrence m/z bins in dataset A3. Spatial
maps indicate the presence / absence of peaks in each pixel (spectrum). Shown are
the 0.25 Da wide bins centred at m/z :

(a) 2932.5 with occurrence 0.997,

(b) 2147.25 with occurrence 0.99,

(c) 2211 with occurrence 0.98,

(d) 1570.75 with occurrence 0.979,

(e) 1459.75 with occurrence 0.904,

(f) 1562.75 with occurrence 0.863,

(g) 2283.25 with occurrence 0.857,

(h) 1585.75 with occurrence 0.841,

(i) 1296.75 with occurrence 0.841,

(j) 1655.75 with occurrence 0.828.
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be pursued by matching to LC data for identification and follow-up studies, we
prioritised our efforts on pursuing positive indicators.

2.6.2 DIPPS-based Feature Extraction in Dataset A3

In Section 2.6.1 we mention that it is possible to distinguish tissue types on the
basis of a small subset (less than a quarter) of the variables. We also discuss how
a binary variable that characterises a cluster can do so in one of two ways: as a
positive indicator, or a negative indicator. I will consider positive indicators, but all
the methods introduced are general, and with minor modifications could be applied
to negative indicators, or all indicators. In this section I demonstrate how the ideas
introduced in Section 2.4 can be applied to find a subset of variables that characterise
a cluster as positive indicators. I will show how such a subset of variables can be
visualised in a useful way, and how this allows for a more interpretable representation
of the clustering results than just the clustering results themselves.

The DIPPS of Definition 10 takes values between −1 and 1. If variables are listed
in decreasing order of DIPPS, this ordering will rank variables from the best positive
indicator to the worst positive indicator, or best negative indicator. Variables in the
middle of this ranking, with DIPPS near zero, do not correlate with the cluster
of interest. If we choose the cluster of interest to be the cancer cluster of the un-
smoothed clustering shown in Figure 2.6, then Figure 2.9 shows variables with high
DIPPS, i.e. good positive indicators for the cancer cluster — presence correlating
with the cancer regions. Note that we could apply this DIPPS-based approach, and
produce all the same results that follow from it in Section 2.6.3 to any of the clusters
of Figure 2.6. We choose the cancer cluster from the unsmoothed result because we
are particularly interested in the cancer, and this serves as an illustrative example.
In Section 3.1 we consider the application of this approach in a more systematic way
to all clusters, and we will limit our attention to the smoothed results. In general,
considering spatial plots of all the variables in a MALDI-MSI dataset is tedious, and
even for a shortlist such as this considering each image in detail is time consuming
and does not yield meaningful interpretations. We present a method for combining
the images of Figure 2.9 into a single heatmap in Section 2.6.3, and once follow-up
analyses have been carried out on individual proteins then it is possible to come
back and consider the individual spatial distributions of peptides originating from
proteins known to be of interest. In order to obtain a subset of variables from this
ranking, we use a threshold and take all variables with DIPPS above this threshold.
We suggest a heuristic threshold, a+

∗ , in Definition 12. For the unsmoothed cancer
cluster of Figure 2.6 this heuristic a+

∗ = 0.1832. Figure 2.10 shows the dependence
of D(c, ta+) on a, and the local minima at a+

∗ . In dataset A3, 54 variables have a
DIPPS greater than or equal to a+

∗ = 0.1832.
As mentioned in Section 2.1 and discussed further in Section 2.3.1 there are two

main conditions we attempt to satisfy when we bin our data with Algorithm A.1:

• Peaks originating from different molecular species are placed in different bins,
and

• Peaks originating from the same molecular species are placed in the same bin.

Realistically, due to the data-independent nature of Algorithm A.1, the second of
these two goals can never be guaranteed to be completely satisfied. Either of these
goals not being met can result in molecular species that would otherwise be de-
tected as good positive indicators not being detected. We can address this issue by
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Figure 2.9: Occurrence maps for high difference in occurrence m/z bins in dataset
A3. Spatial maps indicate the presence / absence of peaks in each pixel (spec-
trum). Shown are the 0.25 Da wide bins centred at m/z :

(a) 1406.75 with DIPPS 0.918,

(b) 2484.25 with DIPPS 0.883,

(c) 2854.5 with DIPPS 0.867,

(d) 1998 with DIPPS 0.859,

(e) 1936 with DIPPS 0.854,

(f) 1609.75 with DIPPS 0.848,

(g) 1390.75 with DIPPS 0.823,

(h) 2392.25 with DIPPS 0.717,

(i) 1740 with DIPPS 0.7,

(j) 2246.25 with DIPPS 0.657.
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repeating the same analysis in parallel, but using Algorithm A.3 to shift the bin
locations by half a bin-width. This ensures that each molecular species that ought
to be detected will be detected in at least one of the two parallel analyses. We did
this for dataset A3, and there are a number of things to note about the results of
these shifted-bin analyses:

• The clustering is quite robust to the shifting bin locations. The unsmoothed
clustering result of Figure 2.6 changes in only 277, or ∼ 2%, of 14050 pixels
when repeated on the shifted-bin data.

• In the shifted-bin analysis, a+
∗ = 0.1668 for the cancer cluster, not very differ-

ent to the a+
∗ = 0.1832 in the initial analysis.

• 54 variables (m/z bins) have a DIPPS greater than or equal to a+
∗ in the

shifted-bin analysis — the same number as in the initial analysis. Of these 54
variables, 47 match between the two analyses in a one-to-one manner. Two
pairs of adjacent bins in the initial analyses appear as a single bin in the shifted-
bin analysis, and one pair of adjacent bins in the shifted-bin analysis appears
as a single bin in the initial analysis. Three variables appear in the shifted-
bin analysis that did not appear in the initial analysis, and two variables
appear in the initial analysis that do not appear in the shifted-bin analysis.
This behaviour highlights the importance of using multiple binnings in parallel
in order to ensure important variables are not missed. In the interests of
illustrating methods and ideas simply I will consider only one binning for the
remainder of the discussion of the ovarian cancer data in this chapter and the
analyses that follow in Section 3.1. I will revisit the concept of using multiple
shifted-bin analyses in parallel in Section 4.2.1 when we consider classification
of the endometrial data.

2.6.3 Visualising Characterisations of the Cancer Cluster

In Section 2.6.2 I demonstrated how the DIPPS can be used with a heuristic cutoff
(Definition 12) to obtain a set of positive indicators for the unsmoothed cancer
cluster of Figure 2.6. We will call these variables ‘DIPPS-features’, and in this
section we will explore how the spatial distribution of these DIPPS-features can be
visualised in an easily interpretable, and therefore useful, way.

We count how many DIPPS-features exhibit presence in each spectrum — that
is, if we represent the DIPPS-features as a d-index subset of the variables with binary
vector dual d = ta+∗ , then we consider the sum dTX. We visualise these counts for
dataset A3 as heatmaps in Figure 2.11, using the spatial distribution of spectra
discussed in Section 2.3.2 and colouring pixels to indicate the count represented in
dTX for each spectrum. In Figure 2.11, we use light/bright colours to indicate pixels
for which many of the DIPPS-features are present in the corresponding spectra, and
dark/dull colours to indicate pixels for which many of the DIPPS-features are absent.
Grey indicates spectra in which none of the DIPPS-features are present.

The strength of heatmaps such as those shown in Figure 2.11 is their inter-
pretability — they provide interpretations for spatial regions to be that are of direct
biological relevance. DIPPS-heatmaps allow for gradual differences between spatial
regions to be represented — in contrast to the hard boundaries in a cluster member-
ship. Furthermore, the values in the DIPPS-heatmaps can be directly interpreted
in terms of the DIPPS-features, which correspond to peptide masses. For example,
“between 5 and 10 DIPPS-features are present in a particular region”. This strength
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Figure 2.10: Plot of a on the x-axis versus Dcos

(
c, ta+

)
on the y-axis, showing the

cutoff a+
∗ in red where c is the centroid and ta+ is defined in Definition 11 such that

the subset of interest corresponds to the cancer cluster of the unsmoothed clustering
result shown in Figure 2.6.

of DIPPS-heatmaps is highlighted by comparing to the relatively abstract interpre-
tations of cluster memberships such as those of Figure 2.6. For example, “spectra
in the cancer cluster are more similar to each other than to spectra from other clus-
ters”. We discuss the interpretations that can be made from such heatmaps later
in this section, when we interpret the heatmaps of Figure 2.11. First, we discuss
the application of the spatial smooth introduced in Section 2.5 to producing the
smoothed results in Figure 2.6 and Figure 2.11.

The unsmoothed heatmap shown in Figure 2.11 appears “speckled” in places,
and this speckling can be reduced by incorporating a spatial smooth. In Section 2.5
we suggest a spatial smooth that preserves the binary nature of the data. Dataset
A3 was smoothed using Algorithm 2.2 with a smoothing parameter τ = 0.25. An
identical analysis, as discussed above, k-means clustering and DIPPS feature ex-
traction, was performed on the smoothed data, resulting in the smoothed heatmap
shown in Figure 2.11. Some things to notes about the results on the smoothed data
include:

• The clustering is quite robust to smoothing, the two clusterings of Figure 2.6
differ in only 894 or ∼ 6% of 14050 spectra. These small differences correspond
to a similar reduction in ‘speckling’.

• The 9 spectra that were empty in the raw data, as mentioned in Section 2.3.2,
are no longer empty in the smoothed data.

• In the smoothed data a+
∗ = 0.1926893 for the cancer cluster, quite similar to

a+
∗ = 0.1831931 in the initial analysis.

• There are 45 DIPPS-features in the smoothed data. All 45 show up in both
the initial analysis, and the shifted-bin analysis mentioned earlier.
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Figure 2.11: (a) H&E stained tissue section with arrows indicating the four visible
primary tumours and (b) DIPPS heatmap for the cancer cluster in the unsmoothed
data (τ = 0, left) and the smoothed data (τ = 0.25, right). In the unsmoothed data,
the DIPPS-heatmap represents the sum of the 54 m/z bins with DIPPS ≥ a+

∗ =
0.1832, and in the smoothed data the sum of the 45 smoothed (τ = 0.25) m/z bins
with DIPPS ≥ a+

∗ = 0.1927.

The smoothed DIPPS-heatmap exhibits noticeably “sharper” edges and less “speck-
ling” than the unsmoothed heatmap, while still displaying a very similar spatial
distribution.

Comparing the heatmaps to the histology, all shown in Figure 2.11, the four main
bright areas in the heatmap correspond well with the ovarian tumours, much like
the cancer cluster of Figure 2.6. There are two less bright, but still distinguishable
regions also of interest shown in the heatmaps of Figure 2.11:

• One “connects” between the top two cancer tumours, and extends up and to
the left from them.

• The other is a separate node of brightness directly left of the second from
bottom primary tumour.

When the tissue was considered by a pathologist, in addition to identifying the four
main cancer tumours, two other areas of interest were noted, but could not be con-
firmed as cancerous tumours without further analysis. One of these additional areas
corresponds to the second region noted above, the other was at the very bottom, and
is not highlighted in the heatmaps of Figure 2.11. The region mentioned in the first
point above was not highlighted by the pathologist as being potentially cancerous.
This back and forth between MALDI-MSI data analysis and pathology is essential
to making use of such data. In this case, the connecting region mentioned in the first
point above has been identified as primarily connective tissue. One hypothesis that
agrees with the pathology, and also explains why this region would be highlighted in
the heatmaps of Figure 2.11 is that the tumours originated as connective tissue and
may have retained some of the connective tissues characteristic molecular features.
This hypothesis is further supported by the intermediate brightness of the regions
between the three central tumours — that also corresponds to small areas of con-
nective tissue. The area to the left has some similarity to the tumours and this is of
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interest as it was identified as potentially cancerous by the pathologist, yet the area
at the bottom which was also identified as potentially cancerous by the pathologist
does not share this similarity to the tumours. It is possible that MALDI-MSI data
could be used in combination with pathologists annotations in order to improve the
sensitivity of histopathological annotations in the future. Furthermore the region
at the bottom does not exhibit this similarity, and as such is clearly differentiable
from the left area on the basis of the MALDI-MSI data — this demonstrates that
multiple regions, equally ‘in question’ from the perspective of a pathologist, could
potentially be distinguished by these molecular features. This is promising as it
indicates that perhaps the use of MALDI-MSI data in combination with patholo-
gists annotations based on staining and light microscopy could potentially not only
improve sensitivity but also specificity of such histopathological annotations.
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Chapter 3

Applications of DIPPS-based
Feature Extraction

In Chapter 2 we introduced DIPPS-based feature extraction as a method for finding
a set of DIPPS-features that are good positive indicators for a subset of interest
in the data. In Section 2.6 we considered the application of this feature extraction
method to the the ovarian cancer dataset A3 — in that application the subset of
interest corresponded to cancer tissue in dataset A3, as obtained by k-means clus-
tering. In Section 3.1 and then later also in Appendix B we apply this approach to
the remaining ovarian cancer datasets, and the workflow for doing so is summarised
in Figure 3.1. The DIPPS-based feature extraction approach is a general method
however, requiring only binary data and a subset of interest. There is no limitation
to MALDI-MSI data, or to using clustering to find such a subset. In this chapter
we consider two applications of the DIPPS-based feature extraction approach intro-
duced in Chapter 2. Both the applications we consider are MALDI-MSI applications
as this is the focus of our work, but the DIPPS-based feature extraction approach
can apply to any binary presence/ absence data, not only MALDI-MSI data. The
first application we consider is a natural extension of the ovarian cancer work we
began discussing in Chapter 2 and so uses clustering to find the subset of interest,
but the second application does not require any analysis to find a subset of interest
as the subset is already part of the experimental design. Brief descriptions of these
two applications follow.

First, in Section 3.1 and with additional details in Appendix B, we extend the
application considered in Section 2.6 to the ovarian cancer data of Section 1.5.1 in
two ways: by applying the feature extraction to other tissue types, and by applying
the feature extraction to the remainder of the ovarian cancer datasets discussed in
Section 1.5.1, including both multiple datasets from the same patient and datasets
from different patients. Ultimately we compare the sets of DIPPS-features extracted
and thereby investigate within-patient and between-patient variability in order to
demonstrate that within-patient variability is less than between-patient differences
— meaning it is feasible to detect real between patient differences in these data. We
have published this work (Winderbaum et al., 2015).

Second, in Section 3.2.2, we consider a different application of the DIPPS-based
feature extraction approach, to the glycan data of Section 1.5.2. In these glycan data
the goal is to demonstrate that glycans can be detected using MALDI-MSI through
the use of an enzyme, PNGase F. In order to do this, two regions of tissue where
used, one treated with PNGase F and one not. The untreated region is expected
to exhibit no glycan signals and acts as a control group, so any glycans should be
able to be detected by comparing these two groups. This natural separation of the
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data into two groups provides the subset of interest for the DIPPS-based feature
extraction approach, and so no analysis is necessary to find the subset of interest
in this case, in contrast to the ovarian cancer application where we use k-means
clustering to find the subsets of interest.

3.1 Comparing Ovarian Cancer Datasets

This section is organised in the following way. Initially in Section 3.1.1 I briefly
describe the Jaccard distance and how it can be used to compare two sets of DIPPS-
features. I suggest that this will provide a useful method for making the many com-
parisons we are interested in making between tissue types, datasets, and patients.
Although the primary interest is the comparison of datasets from different patients,
in order to do this in a meaningful way first the within-patient variability must be
addressed. I will consider within-patient variability in Sections 3.1.2 - 3.1.4 by com-
paring results between datasets collected from the same patient. Having developed
an understanding of the within-patient variability in Sections 3.1.2 - 3.1.4, I then
consider comparisons between different patients in Section 3.1.5. Finally, I discuss
my conclusions and the implications of these comparisons in Section 3.1.6. In Sec-
tion 3.1.2 I consider results in some detail, as an example, but in Sections 3.1.3 - 3.1.5
I focus on the most important and interesting results. A more detailed discussion
of these results is included in Appendix B.

3.1.1 Jaccard Distance for Comparing Datasets

Gorzolka and Walch (2014) have shown that comparisons between tissue samples is
complicated by tissue (and tumour) heterogeneity, to the point where even samples
from the same patient can appear to be very different. In order to detect meaningful
differences between patients despite high within-patient variability, it is crucial to
take tissue heterogeneity into account. The ability to take tissue heterogeneity into
account is the primary advantage of MALDI-MSI, as it has the potential to separate
data from different tissue types within a single tissue sample. In Section 2.3.3 we
demonstrated that tissue types can be separated by clustering in the ovarian cancer
data. In Section 2.6.2 we demonstrated how a DIPPS-based feature extraction
approach could be used to find a set of positive indicators which we call DIPPS-
features, for a particular subset of the data such as a cluster or tissue type. Here I
briefly describe the Jaccard distance and how it can be used to compare two sets of
DIPPS-features.

Definition 13. Jaccard Distance: is a measure of the dissimilarity between two
sets S1 and S2,

DJac(S1, S2) = 1− |S1 ∩ S2|
|S1 ∪ S2|

. (3.1)

I use |S1| to denote the size of the set S1, or its cardinality. Note that other
set-theoretic measures could be used here, |S1 ∪ S2| − |S1 ∩ S2| for instance, but
these would all be largely equivalent for our purposes and the Jaccard distance is a
commonly used measure of dissimilarity between sets across a wide variety of dis-
ciplines — see Cross and Sudkamp (2002); Jaccard and Jacoby (2010); Leydesdorff
(2008). When S1 and S2 are sets of DIPPS-features, corresponding to m/z bins or
variables in the MALDI-MSI data, the Jaccard distance is directly interpretable as
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Multiple tumours, each
from a different patient.

Multiple sections
from each tumour.
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including antigen retrieval,
trypsin digestion, and
matrix deposition.Data Acquisition

Preprocessing
including baseline
subtraction and peak-
picking.Presence/Absence

of peaks is considered
hensceforth.
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as in Appendix A.

Smoothing
as in Section 2.5.

Clustering
as in Section 2.2.2.

DIPPS
as in Section 2.4.

Jaccard Index
as in Section 3.1.1.

Figure 3.1: Workflow describing the process of obtaining DIPPS feature sets char-
acterising the tumour cluster in each of the ovarian cancer datasets, which are then
compared using the Jaccard distance (Section 3.1.1) in Section 3.1.

55



the proportion of DIPPS-features unique to one of the two sets being compared.
The simple form of the Jaccard distance is useful. If a particular similarity or dis-
similarity is of interest, identifying the variables that contribute to that similarity/
dissimilarity is straightforward, and so targeted follow-up experiments can be easily
designed. In the remainder of Section 3.1 we apply the DIPPS-based feature ex-
traction approach of Section 2.6.2 using the heuristic cutoff of Definition 12 for each
of the tissue types/ clusters in each of the ovarian cancer datasets introduced in
Section 1.5.1. We will then make extensive use of the Jaccard distance to compare
the sets of DIPPS-features resulting from this feature extraction approach.

3.1.2 Detailed Comparisons Within Patient A

In Chapter 2 dataset A3 was used extensively in illustrative and exploratory anal-
yses. A3 corresponds to a single section or ‘slice’ of an excised tissue block from
patient A. The datasets A1, A2 and A4 correspond to different sections or ‘slices’ of
the same tissue block as A3. As all four of these sections come from the same tissue
block, it is expected that they should be very similar. As such any reliable analysis
method should produce similar results on these sections. For example, clustering to
separate tissue types should show visually similar patterns. How similar or differ-
ent results are between these datasets can give an impression of the within-patient
variability as well as the reproducibility of both the technology, and the method
of analysis. Furthermore A1 and A2 correspond to consecutive sections of tissue,
and thus would be expected to be even more similar to each other. In this section
I will introduce these other patient A datasets, and apply the ideas introduced in
Chapter 2 to them. I present clustering results in Figure 3.2, and apply the feature
extraction approach of Section 2.6.2 using the heuristic cutoff of Definition 12 to
obtain a set of DIPPS-features for each cluster. I then visualise the similarities/
differences between these sets of DIPPS-features using the Jaccard distance, Def-
inition 13, in Figure 3.3. This visualisation allows for the sets of DIPPS-features
associated to each of the 16 clusters shown in Figure 3.2 to be compared, both within
dataset and between datasets.
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Figure 3.2: Spatial maps showing the cluster membership produced by 4-means
clustering with the cosine distance on the binary binned data for 4 datasets, from
left to right: A1, A2, A3 and A4. Clusters are identified with colours, and roughly
correspond to the tissue-types cancer , adipose , stroma , and off-tissue .

Figure 3.2 shows the cluster-membership produced by 4-means clustering using
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the cosine distance on the binned binary data for the four datasets: A1, A2, A3
and A4. As mentioned above datasets A1 and A2 come from consecutive sections
of tissue, meaning that discounting any distortion caused during sectioning, these
two sections of tissue should be approximately 6 − 10µm apart in the direction
orthogonal to the sectioning — roughly one tenth of a pixel, so we would expect
them to be very similar. Similarly, A3 and A4 come from nearby sections, with
only two or three sections between them. We can see from Figure 3.2 that in all
four datasets the cluster analysis results in clusters that correspond spatially to the
four broadly different tissue types present in the tissue — cancer, adipose, stroma,
and off-tissue. There is a noticeable difference in the cancer clusters of datasets A1
and A2 as compared to A3 and A4 in that the connective areas at the top of the
images shown in Figure 3.2 are included in the cancer clusters of datasets A1 and
A2, but not of A3 and A4. These connective areas are the same as mentioned in
Section 2.6.3. In Section 2.6.3 we hypothesised that this region was similar to the
cancer in A3 due to the tumour having grown out of this connective tissue, and
these clustering results support this hypothesis — the similarity is potentially even
more evident in datasets A1 and A2 in which this region is clustered together with
the primary tumours, indicating spectra from this region are sufficiently similar to
spectra from the primary tumours to be clustered together. Also, for datasets A1
and A2 some of the off-tissue spectra in the lower Y-coordinate values that are closer
to the tissue are included in the adipose cluster. In datasets A3 and A4 the adipose
clusters do not extend to these spectra, and there are more off-tissue spectra total,
particularly in dataset A4. To summarise, there is broad similarity in the clustering
results, but when considered in more detail, results from consecutive sections are
more similar than results from non-consecutive sections — this is to be expected.

Figure 3.3 shows the 16× 16 symmetric distance matrix resulting from pairwise
Jaccard distance comparisons between the 16 sets of DIPPS-features, each corre-
sponding to one of the 16 clusters shown in Figure 3.2 — four from each of the four
sections. This matrix of comparisons is visualised in Figure 3.3 using colour to show
values of the Jaccard distance — dark colours indicating small values close to zero,
i.e. similarity, and light colours indicating large values close to one, i.e. dissimi-
larity. Each pixel in the 16 × 16 grid shown in Figure 3.3 corresponds to a single
pairwise comparison. For example, the far top right pixel of Figure 3.3 corresponds
to the comparison of the off-tissue and cancer clusters both from dataset A4. In
this example, a set of DIPPS-features is found for each of these two clusters using
the feature extraction method described in Section 2.6.2 and the heuristic cutoff of
Definition 12. These two sets of DIPPS-features are then compared using the Jac-
card distance, and the Jaccard distance between the two sets determines the colour
of the pixel. In this example, the pixel is very light coloured meaning the Jaccard
distance between them is close to one, that they are dissimilar, and more specifically
that the two sets being compared do not have very much overlap between them.

Remarks on Figure 3.3:

• The dark diagonals are very clear, reflecting the broad agreement between
datasets. For simplicity let us interpret clusters as tissue types, despite small
inconsistencies between the two. Then we can interpret these dark diagonals
as showing that the variables which characterise any particular tissue type in
one dataset, often also characterise that tissue type in other datasets. Because
the Jaccard distance is a set comparison measure, dark pixels, small values,
or similar sets indicate a large intersection between the two sets being com-
pared. In this case the sets correspond to DIPPS-features found to characterise
particular tissue types in particular datasets, and these diagonals represent
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Figure 3.3: Image representing the Jaccard distance comparisons of Section 3.1.1 of
the cluster memberships of Figure 3.2. A set of DIPPS-features is found for each of
the 16 clusters shown in Figure 3.2 using the feature extraction approach discussed
in Section 2.6.2 and the heuristic cutoff of Definition 12. The image shown above
represents pairwise Jaccard distances between these sets of DIPPS-features. Black
lines separate datasets, with the four pixels within each black divisor corresponding
to the four clusters for that dataset. So the main block diagonal represents within-
dataset comparisons, and the rest represent between-dataset comparisons.
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comparing the characterising DIPPS-features for the same tissue type across
different datasets. The fact these diagonals are dark show that variables iden-
tified as DIPPS-features for a particular tissue type in one dataset often are
identified as DIPPS-features for the same tissue type in other datasets as well
— i.e. these sets have a large intersection. This essentially establishes the
reproducibility of the DIPPS-feature extraction method for reliably identify-
ing the same (or similar) variables important to the characterisation of tissue
types across different datasets from the same patient.

• The similarity between the cancer cluster of A1 and A2 to the adipose clus-
ter of A3 and A4 noted during the discussion of Figure 3.2 above is reflected
in Figure 3.3, but using the results of Figure 3.3 we could, if we were inter-
ested, now identify the variables responsible for this similarity. This allows for
more indepth interpretation than was possible from the clustering results of
Figure 3.2 alone.

• The only off-diagonal entry that is consistently and noticeably darkened be-
tween all the datasets is the comparison of adipose and stroma clusters, which
could indicate that of all the tissue types, these are the least well separated,
and we will see further evidence for this when we consider the clustering results
on the other patients in Sections 3.1.3 and 3.1.4.

3.1.3 Summary of Comparisons Within Patient B

In this section we consider four datasets from patient B, another ovarian cancer
patient, as described in Section 1.5.1. I will introduce the four datasets much like I
did for patient A in Section 3.1.2, by considering the clustering results. However for
patient A I discussed in detail the Jaccard distance comparisons as well as the clus-
tering results, and although these detailed comparisons are included in Appendix B
they are omitted here for brevity.

Figure 3.4 shows cluster-membership much like Figure 3.2, but for the four
datasets from patient B. In Section 3.1.2 I equated clusters to tissue types, and
mentioned that this was a slight simplification as there are small discrepancies be-
tween the two that can be seen by comparing the cluster memberships to the H&E
stained tissues sections. In the interest of brevity I do not include the H&E images
here, instead describing any notable discrepancies between the clustering results
and the tissue types, as these will be relevant when interpreting the comparisons to
follow. Broadly we are interested in tissue types, and I often refer to the clusters
by their associated tissue types, i.e. cancer, stroma, adipose, and off-tissue. How-
ever, when discussing discrepancies between tissue types and clusters, in order to
clarify the distinction I use the colour to refer specifically to a cluster and not its
associated tissue type, i.e. purple, green, cyan, or salmon. The purple clusters of
datasets A1 and A2 in Figure 3.2 containing some connective tissue regions as well as
the cancerous primary tumours as discussed in Section 3.1.2 is an example of such
a discrepancy between clusters and tissue types. It is important to discuss these
discrepancies as they explain many of the features in the comparisons that would
otherwise appear to be artefacts. Only once these discrepancy-caused effects are
understood can the remaining comparisons be interpreted and overall conclusions
be made — I discuss such overall conclusions in Section 3.1.6.

As far as discrepancies between tissue types and clusters as shown in Figure 3.4
go, the main point to note is that in dataset B1 the cancer and stroma clusters are
well separated, but in the other three datasets the clustering broadly grouped these
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Figure 3.4: Spatial maps showing the cluster membership produced by 4-means
clustering with the cosine distance on the binary binned data for 4 datasets, from
left to right: B1, B2, B3 and B4. Clusters are identified with colours, and roughly
correspond to the tissue-types cancer , adipose , stroma , and off-tissue . The
exception to this rough correspondence between clusters and tissue types is that the
green clusters of datasets B2 and B4 correspond to off-tissue regions.

two tissue types together in the same cluster. This leaves an ‘extra’ cluster in these
three datasets, because these two tissue types are both included in a single cluster.
In B2 and B4 the off-tissue region is split between the salmon and green clusters.
In B3, the green cluster forms a small area between cancer areas. It is also useful
to note that the adipose clusters across all four datasets agree well, both with each
other and with the histology.

In order to reduce discrepancies between clustering results and tissue types as
determined by histology, the clustering results could be improved by using more so-
phisticated clustering methods and fine-tuning parameter choices and data cleaning
steps that preceded the clustering. However, even without these refinements these
tissue types can be separated by individualising the choice of number of clusters to
use for each patient, as it would appear the stroma is more difficult to separate from
the cancer in patient B. In Winderbaum et al. (2015), we use 3-means clustering
for patient B and this achieves much better agreement between cluster membership
and tissue types. However the objective here is to demonstrate the usefulness of the
DIPPS feature extraction in exploratory analyses and the fact that these clustering
results do not perfectly reflect the tissue types actually helps to highlight the use-
fulness of DIPPS — it is not necessary for the clustering to separate the tissue types
perfectly in order for us to obtain useful interpretations using this approach. The
fact that we use the exact same clustering algorithm on all the datasets also helps
to simplify the presentation of these results, allowing us to focus our discussion on
the interpretation of results without needing to carefully justify many parameter
choices.

The clustering results for B1 correspond best to tissue morphology, and so I will
compare the other datasets clustering results to those for B1.

3.1.4 Summary of Comparisons Within Patient C

Similarly to Section 3.1.3, here I introduce clustering results for four datasets from
patient C — shown in Figure 3.5. The more detailed Jaccard distance comparisons
of these clusters associated DIPPS-features are included in Appendix B.

Remarks on the clustering results of Figure 3.5:
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Figure 3.5: Spatial maps showing the cluster membership produced by 4-means
clustering with the cosine distance on the binary binned data for 4 datasets, from
left to right: C1, C2, C3 and C4. Clusters are identified with colours, and roughly
correspond to the tissue-types cancer , adipose , stroma , and off-tissue .

• C2 and C4 show a noticeable number of empty spectra, indicated by grey
pixels. This could indicate a problem in overall data quality. Reasons that
could account for this above-normal number of empty spectra include: inef-
fective antigen retrieval, digestion, or matrix deposition during sample prepa-
ration, instrumentation issues during data acquisition, and even artefacts in
the peak-picking step. For our purposes, the key thing to remember is that
these datasets could potentially have lower data quality compared to the other
datasets.

• In C2 and C3 the cyan clusters extends out into the off-tissue region. This is
similar to the cyan clusters in datasets A1 and A2 as shown in Figure 3.2. One
explanation for these clusters including off-tissue regions is that there could
be peptides that are mobilised during sample preparation which move off the
tissue. The fact that clusters from different datasets, and even different pa-
tients, show this spread into off-tissue regions from adipose tissue suggests the
possibility that some adipose specific peptides may be particularly susceptible
to being mobilised. This is a concern that could be further investigated and
such investigation could ultimately result in improvements to sample prepara-
tion methods for acquiring accurate and spatially resolved MALDI-MSI data
in the future.

Aside from the two points above, cluster agreement both between datasets and to
tissue types is good.

3.1.5 Between Patient Comparisons

A comprehensive comparison of all four clusters from each of the 12 datasets intro-
duced is of interest, and is included in Appendix B. However we are particularly
interested in the cancer comparisons, as similarities therein could potentially yield
common markers that could be used for early detection. Dissimilarities in the cancer
comparisons could potentially lead to markers for diagnosis, prognosis, or predic-
tion of response to treatment and be used for the individualisation of treatment
plans. Due to our particular interest in cancer we consider the cancer comparisons
specifically in Figure 3.6. Figure 3.6 shows the pairwise Jaccard distances between
the 12 sets of DIPPS-features, each corresponding to one of the 12 cancer clusters
shown across Figures 3.2, 3.4, and 3.5 — one set of cancer cluster characterising
DIPPS-features from each of the four sections from each of the three patients. Here
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Figure 3.6: Image representing the pairwise Jaccard distances of Section 3.1.1 be-
tween the 12 sets of DIPPS-features corresponding to each of the 12 cancer clusters
shown in Figures 3.2, 3.4, and 3.5 — one set of cancer cluster characterising DIPPS-
features from each of the four sections from each of the three patients. Black lines
seperate patients, similarly to Figure B.3 — in fact, the results shown here are a
subset of those in Figure B.3, corresponding to every fourth pixel, i.e. those corre-
sponding to cancer clusters.

we discuss these results in a broad sense, and we provide some more details in
Section 3.1.6 and Appendix B.

The first thing to note in Figure 3.6 is that within-patient similarities are stronger
than between-patient comparisons. This is encouraging as tissue heterogeneity,
which we are hopefully at least partly accounting for by using our clustering re-
sults, can provide challenges in the analysis of MALDI-MSI data (Gorzolka and
Walch, 2014). After we note that we can separate within-patient variability from
between-patient variability by visually observing that the main block diagonal in
Figure 3.6 is darker than the off-diagonal, the next observation from Figure 3.6 is
also clear — there appears to be strong similarity between patients A and C that is
absent in comparisons with patient B. There are also a few more minor points:

• Dataset C4 has lower similarities to all other datasets overall, and this could
be explained by the potentially lower quality of this dataset implied by the
‘speckling’ noted earlier.

• Dataset B1 has lower within-patient similarity than any other dataset — this
is likely to be because dataset B1 is alone amongst the patient B datasets in
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separating the cancer tissue well, the other three datasets include significant
amounts of stromal tissue in their purple clusters.

The second point above leads back to the main observation that the cancer
clusters of patient B are notably different from those of patients A and C. Initially
one might think this could be due to the inclusion of non-cancer stroma tissue in
three of these purple clusters (B2, B3, and B4), however note that the cancer cluster
of dataset B1 (in which the cancer cluster is much better separated) does not show
much higher cross-patient similarity. This indicates that a more likely explanation
for patients B’s cancer cluster demonstrating dissimilarity to the cancer clusters of
patients A and C is actually that there is a difference between these patients’ cancers
at a molecular level. After acquiring more detailed descriptions of the histopathology
of the tissues from these patients we came to understand that the cancer tissue of
patient B is largely necrotic, and it could be that we are detecting blood-specific
masses that characterise this necrosis. In short, the back and forth process between
data analysis and biology/histopathology produced a real, biologically significant
and consistent, difference between these patients’ cancers.

3.1.6 Conclusions

In Chapter 2 we demonstrated that powerful interpretations can be made from ex-
tending clustering results with a DIPPS-based approach to identifying sets of posi-
tive indicators for each cluster. In Section 3.1.1 we then discussed how the Jaccard
distance could be used to compare these sets of positive indicators. In Sections 3.1.2-
3.1.5 and Appendix B we then demonstrated how meaningful interpretations can be
obtained by considering these comparisons. These interpretations range from qual-
ity control checks to biologically relevant clues that warrant further investigation via
LC-MS and immunohistochemistry for identification and validation at the protein
level. We also demonstrated that meaningful conclusions could be drawn despite
the variations and artefacts of the clusterings — in fact, the variation in clustering
results enriched the conclusions drawn from the Jaccard distance comparisons, de-
spite making them more complicated. Some particular examples of interpretations
resulting from the Jaccard distance comparisons follow:

• There are 7 m/z bins that characterise the off-tissue regions in all 12 datasets
— these could be further investigated as potential contaminants, matrix peaks,
or artefacts of the peak-picking algorithm. If they could be confirmed as matrix
peaks, for example, they could then be excluded in future studies. Until further
validation is carried out on these peaks, they should certainly be considered
sceptically if they came up as relevant in any other analyses.

• Similarly, there are 16 m/z bins that characterise the green clusters in both
B2 and B4 (which correspond to off-tissue regions), but characterise none
of the off-tissue clusters in any of the datasets. These m/z values could be
further investigated as potentially delocalised peptides (if they are confirmed
to be peptides), or some form of localised contamination (fingerprints, saliva,
etc.) specific to these sections. 7 of these m/z bins also characterise the cyan
clusters in C2 and C3, which include both tissue and off-tissue regions, possibly
supporting the hypothesis that these could be delocalised peptides. Given the
sample preparation steps, there should be only very minimal homogenisation
and so if these m/z bins could be validated as mobilised peptides, this would
indicate directions in which the sample preparation steps could be improved.
Either way, these masses warrant further investigation.
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• Of the 98 variables that characterise the purple clusters in B2, B3, and B4
(which contain both cancer and stroma tissue), 67 also characterise the cancer
cluster of B1 (where cancer and stroma are well separated). However, of these
67 m/z bins, 60 also characterise the stroma cluster of B1. This highlights
the difficulty in separating the cancer from the stroma in this patient, even in
dataset B1 where the clustering succeeded in doing so. This is most likely due
to how the cancer grew out of the stroma tissue and so is still quite similar to
it at the molecular level. The 7 variables that characterise the cancer but not
the stroma in patient B could be further investigated as potential biomarkers.

• The intersection of all 12 sets of cancer-characterising DIPPS-features con-
tains exactly one m/z bin. That m/z bin is centred at 1628.75. This m/z
value matches to a peptide that was identified as originating from the protein
‘Heterogeneous nuclear ribonucleoprotein A1’ (ROA1) in follow-up LC-MS.
The identity of this peptide was validated using in situ MS/MS. This ROA1
protein has been shown to be of interest in the past (Lee et al., 2010; Chen
et al., 2010). The identity of this protein has since been validated by immuno-
histochemistry, and is one of the proteins of interest noted in Winderbaum
et al. (2015). The m/z bin centred at 1628.75 is one of the 7 bins mentioned
in the dot point above as characterising all four cancer clusters of patient B,
but not the stroma cluster of dataset B1.

• The other 6 m/z bins of the 7 mentioned above are also interesting, as they
do not characterise any other cancer clusters (in either patient A or C) and
as such could be further investigated as potential markers that distinguish the
cancer of patient B from that of patients A and C — possibly even for necrotic
tissue in general.

It is possible to investigate many of the results discussed above in more depth.
For example, analyses with shifted bin locations could be considered. Also, more
detail could be included in the investigation of individual m/z bins — for example,
there are (in addition to those mentioned in the first point above) another 15 m/z
bins which are positive indicators for off-tissue in 11 (of 12) datasets.

However, the emphasis of this thesis is to demonstrate that bioinformatic ap-
proaches as suggested here can produce substantial and meaningful results with
relative ease. For the bioinformatician implementing these methods, it is important
to realise that there are many small improvements that can be made to squeeze
every little bit of information out of their data in any particular case, but as most
of the conclusions from these types of exploratory analyses will involve follow up
validation studies, this is not necessarily the goal, and is not what we focus on here.

3.2 Exploratory Analysis of the Murine N-glycan

Data

As discussed in Section 1.6, in order to represent peaklist MALDI-MSI data in the
standard statistical paradigm of ‘variables’ and ‘observations’ we need to discretise
the m/z domain and thereby group peaks by m/z into variables. Up to here we
have used the data-independent binning approach to this, as described in detail in
Appendix A. However in some cases, such as the N-glycan data that we will consider
here, a data-dependent approach is more appropriate. Data-dependent methods
overcome some of the disadvantages of the data-independent binning approach, for
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example binning can split peaks that ought to be grouped into the same variable
due to its arbitrary bin locations, and data-dependent approaches are much less
likely to do this. The disadvantage of data-dependent methods is, as mentioned in
Section 2.1, that extending analyses to multiple datasets is much less natural. As
the interest in the N-glycan data is not to compare multiple datasets, but rather
to simply explore the one dataset, a data-independent approach to discretisation of
the m/z domain is appropriate.

This section is organised as following. First, we introduce the data-dependent
discretisation method we will use in Section 3.2.1. Then in Section 3.2.2 we consider
the application of the DIPPS-based feature extraction discussed in Section 2.6.2 to
the N-glycan data of Section 1.5.2.

3.2.1 Tolerance Clustering

Discretisation can be thought of as clustering of one dimensional data — m/z . The
result of discretisation is essentially a ‘cluster membership’, with each peak belonging
to a ‘cluster’ or variable. In the case of binning, these ‘clusters’ correspond to bins.

Here we introduce one of the simplest approaches to data-dependent discreti-
sation — tolerance clustering. Tolerance clustering is a fairly simple concept, and
has been used to discretise peaklist MALDI-MSI data in the past, for example see
Gustafsson et al. (2012). Tolerance clustering can be thought of as the process of
forming equivalence classes defined by the equivalence relation by which two values
are equivalent if and only if the absolute difference between them is ≤ τ for some
given grouping tolerance τ . To be precise, given a set of real numbers mk, which in
the context of peaklist MALDI-MSI data would be the m/z values of peaks, and a
grouping tolerance τ > 0 the relevant equivalence relation is

Cτ =
{

(mk,mk′) s.t. |mk −mk′| ≤ τ
}
. (3.2)

The equivalence classes defined by Equation 3.2 are then the clusters or peakgroups
or variables, as in Definition 14.

Definition 14. Tolerance clustering: Given a set of real numbers mk a group-
ing tolerance τ > 0 and the equivalence relation Cτ as in Equation 3.2 tolerance
clustering results in the set of group labels ck assigning each mk to a cluster such
that ck = ck′ if and only if there exists a sequence k1, k2, . . . , kn for which k1 = k,
kn = k′ and (mki ,mki+1

) ∈ Cτ for all i = 1, 2, . . . , (n− 1).

Reasonable values for the grouping value τ will depend on the application, and
choosing an appropriate value will require some experimentation in any given case,
but in peptide and glycan MALDI-MSI peaklist data, values of τ around 0.1 are
often reasonable as the difference in m/z between features is often at least 1, and
the mass error is typically smaller than 0.1. Other applications in which the mass
error is greater, such as protein MS, may require larger values of τ .

Both tolerance clustering and binning have the advantage that the number of
clusters does not need to be specified a priori, as it does with a clustering method
such as k-means. However there are also differences between tolerance clustering
and binning, as mentioned previously. For example, tolerance clustering produces
clusters such that if two values are within τ of each other they are guaranteed to be
in the same cluster. Binning cannot make such a guarantee — two values separated
by τ can be put into different bins if the boundary between two bins happens to
fall between them. The interpretability awarded by this guarantee is one of the
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main advantages of tolerance clustering. Following are several other points worth
mentioning about tolerance clustering in the context of MALDI-MSI data. Note that
in this context, we interpret clusters as ‘peakgroups’ as the values we are clustering
are peaks m/z values.

• Tolerance clustering has a tendency to produce a number of peakgroups that
are very small, containing as few as a single peak. It is quite similar to binning
in the sense that binning also produces many almost empty variables. Typi-
cally further analyses are robust to the removal of these low-occurrence peak-
groups (variables), as we demonstrated for binning in Section 2.6.1. Removing
these low-occurrence peakgroups can improve both computational speed and
ease of interpretation by reducing the number of variables involved.

• The choice of tolerance τ is important — results can be very sensitive to choice
of τ if τ is chosen to be too large. If τ is too large, tolerance clustering will
group values that should be kept separate. If the dataset is sufficiently large,
or if enough datasets are combined for a single analysis, this grouping of values
that should be kept separate can occur regardless of τ . If τ is too small, tol-
erance clustering can split values that should be kept together, compounding
the problem discussed in the first dot point above. Peakgroups are typically
very well resolved in MALDI-MSI particularly for high-quality internally cal-
ibrated datasets such as those we consider. In our experience, a tolerance of
τ = 0.1 tends to avoid both these issues for sufficiently small datasets — less
than two million peaks or so. In larger datasets, say 10 or 15 million peaks,
tolerance clustering will often begin to fail regardless of choice of τ unless the
rate of erroneous and high mass-error peaks can be limited somehow. In these
datasets, we recommend using either a data-independent approach with fixed
cluster width such as binning, or a more sophisticated data-dependent discreti-
sation that can take into account peak density, such as the DBSCAN algorithm
proposed by Ester et al. (1996) or more specifically its deterministic variant
DBSCAN* (Campello et al., 2013, Section 3).

• Tolerance clustering can exhibit artefacts — particularly when there is a single
outlying peak halfway between two groups of peaks — causing the tolerance
clustering to group the two together, when they should be kept separate.

Many of the pitfalls of tolerance clustering mentioned in the dot points above can
be avoided by more advanced data-dependent clustering methods for discretisation.
However, in many cases it is possible to, by carefully choosing a tolerance τ , avoid
all these issues in any given MALDI-MSI dataset. As mentioned above, a tolerance
of τ = 0.1 will often work, with almost no problems. If possible, using tolerance
clustering in this way is advantageous due to its simple interpretability.

In conclusion, although tolerance clustering improves on some of the limitations
of binning, it also shares many of the limitations of binning. Some of these limita-
tions of the tolerance clustering method can be further improved upon by using more
advanced clustering algorithms, as mentioned above, however in many cases these
limitations can be minimised by careful selection of tolerance τ . When these limi-
tations can be minimised by careful selection of τ then tolerance clustering has the
advantage that the resulting peakgroups are quite easily interpretable, as mentioned
above.

The glycan data of Section 1.5.2 is such a case for which careful choice of tolerance
τ can minimise the limitations of the tolerance clustering method, and as such we
apply tolerance clustering to these data in Section 3.2.2. Improvements could be
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made by using more sophisticated clustering approaches, however the purpose of the
N-glycan was to serve as a proof-of-principle and not to squeeze as much information
from the data as possible, and so tolerance clustering is more than sufficient for
exploring the N-glycan data.

3.2.2 Using the DIPPS in the Context of Glycan Data

The glycan data of Gustafsson et al. (2015), as introduced in Section 1.5.2, con-
sists of 202667 peaks from 11014 spectra collected from two regions of interest, one
treated with PNGase F in order to release N-linked glycans, the other a control
that should contain no glycan signals. The objective in this glycan experiment was
to demonstrate that this sample preparation approach can successfully detect gly-
cans using MALDI-MSI and preserve the spatial distributions of these glycans in the
process. We use this application to illustrate the usefulness of the DIPPS feature ex-
traction approach in a context different to the ovarian cancer data originally used to
illustrate it in Section 2.6.2. In these glycan data, there is a region of tissue that has
been treated with PNGase F, which cleaves glycans and makes them detectable by
MALDI-MS. A separate control region, not treated with PNGase F, is also present,
and so potential glycan signals should be identifiable by occurring in the PNGase F
treated regions but not in the control region. This natural partitioning of the data
into two groups, control group and PNGase F treated group, provides the subset
of interest necessary for calculating the DIPPS. Note that the DIPPS-based feature
extraction approach applies to any subset of interest, that can originate from many
different sources. In contrast to the ovarian cancer data analysis of Section 3.1,
where k-means clustering was used to find the subsets of interest, here the subset of
interest is inherent to the design of the experiment and no analysis is necessary in
order to find it. The aim of the analysis to follow is to find a shortlist of candidate
glycan masses by comparing the two regions using the DIPPS, and show that at
least some of them have spatial distributions matching the histology of the tissue.

Samples were analysed by LC-MS in parallel, also with and without PNGase F
treatment — and glycans were identified in the PNGase F treated samples. The
shortlist of glycan candidates we produce from the analysis of the MALDI-MSI data
will then be compared to the glycans identified by LC-MS in order to further support
the identities of the shortlist masses as glycans. We will also compare the spatial
distributions of these candidate masses with tissue histology, as it is of interest if
tissue-type specific glycans can be found.

Tolerance clustering using a grouping tolerance of τ = 0.1 on the glycan data pro-
duces 850 peakgroups, i.e. 850 unique values of the group labels ck in Definition 14.
As mentioned above, many of these peakgroups contain very few peaks, similar to
the distribution shown in Figure 2.7 and discussed in Section 2.6.1 — 90% of these
peakgroups contain fewer than 100 peaks. As mentioned above, one concern when
using tolerance clustering is that an outlying peak lying halfway between two peak-
groups can cause the otherwise separate peakgroups to be grouped together when
they ought to be kept separate. A good sanity check for such unwanted groupings
is to consider the range of each peakgroup — the difference between the minimum
and maximum m/z in the peakgroup. In the glycan data, the maximum such range
after tolerance clustering with a tolerance of τ = 0.1 is 0.737 Da. An m/z difference
of 1 Da is the smallest difference between features we expect to be able to resolve in
these data, and so the fact that the maximum range is less than 1 Da reassures us
that any resolvable features differing by 1 Da have not been combined into a single
peakgroup. If we had peakgroups with ranges significantly above 1 Da, it might be
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Figure 3.7: DIPPS heatmaps showing the sum (count) of the occurrence in the 13
peakgroups with DIPPS ≥ a+

∗ = 0.586 in the PNGase F treated region (left and
centre) and the control region (right). Analogous to the heatmaps of Figure 2.11.

worth considering a lower tolerance τ or either a data-independent discretisation or
a more sophisticated clustering method that can take into account peak density. In
the case of the glycan data, tolerance clustering with τ = 1 is sufficient to resolve
any features differing by at least 1 Da and so we continue with this choice.

a

Cortex

Medulla

Pelvis

Figure 3.8: H&E stain of a section of murine kidney used in the glycan experiment.
Red annotation shows the border between the outer cortex region, and the inner
medulla/pelvis region.

We are interested in finding variables, that is peakgroups produced by the tol-
erance clustering discussed above, containing peaks in the PNGase F treated region
but not in the control region. Such variables would be positive indicators for the
PNGase F region, and so we choose the subset of interest to be the PNGase F
treated region when we calculate the DIPPS for each variable. This choice is anal-
ogous to us choosing the subset of interest to be the cancer tissue in the analysis
of the ovarian cancer data in Section 2.6.2. Using the heuristic cutoff of Defini-
tion 12, the DIPPS ranking includes 13 peakgroups with DIPPS ≥ a+

∗ = 0.586.
The spatial distribution of the sum (count) of occurrence in these 13 peakgroups
is shown in Figure 3.7 as a DIPPS heatmap, and Figure 3.8 shows the histology of
a typical mouse kidney section for comparison, with the major components anno-
tated including the outer cortex region, and the inner medulla/pelvis region. The
log-intensity of the 13 peakgroups of Figure 3.7 are shown individually in Figure 3.9
and Figure 3.10(a). Of these 13 peakgroups, the spatial distributions appear to
be either uniformly distributed across the kidney (Figure 3.9(a), (i), (j), and (l)),
cortex-specific (Figure 3.9(e-h,k), Figure 3.10(a)), or somewhere between the two
(Figure 3.9(b-d)). This is not representative of glycan distributions in this tissue, as
the cortex makes up a disproportionate amount of the tissue, and DIPPS will rank
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glycans higher if they cover a higher proportion of the PNGase F treated tissue.
Although the heuristic cutoff was useful in order to be able to make the compar-
isons between ovarian cancer datasets in Section 3.1, in the context of the glycan
data we are interested in finding as many potential glycan masses as possible, and
so it makes sense to extend the list of masses we consider to include more than the
top 13. Spatial distributions for the log-intensity of the peakgroups ranked 1− 12,
13 − 24, and 25 − 36 as ranked by highest DIPPS are shown in Figures 3.9, 3.10,
and 3.11 respectively. The associated m/z location and DIPPS for each of these top
36 ranked peakgroups are included in the figure captions. The PNGase F treated
region includes two sections of kidney, and the figures show only one for simplicity
as replication is good between the two sections — this can be seen in the similarity
between the spatial patterns of the centre and left images of Figure 3.7. Note that
we stop at the 36th ranked peakgroup and don’t go further because by visually
inspecting Figure 3.11 in comparison to Figure 3.10 and Figure 3.9 we can see that
most of the peakgroups ranked 25−36 shown in Figure 3.11 are low-occurrence and
many of them are not spatially localised in comparison to more highly ranked vari-
ables. If we were to continue and consider variables ranked below 36, this trend only
continues, and so the more lowly ranked variables are not of interest. Considering
the extended list of peakgroups shown in Figure 3.10 and Figure 3.11, we can note
several more interesting spatial distributions:

• There are two peakgroups, Figure 3.10(h) and (j), that exhibit a distinct
cortex-specific spatial distribution concentrated in the centre of the kidney
close to the medulla but absent in the outer cortex. This distinct cortex-
specific spatial distribution seems to indicate there are at least two regions of
the cortex which differ in their glycan composition — very interesting!

• There are also three distinct spatial distributions specific to the medulla/pelvis
region:

– Figure 3.10(f), Figure 3.11(b), and (g) show spatial distributions focused
in a particular subset of the medulla, in a shape spread along the short
axis of the kidney.

– Figure 3.11(e) and (l) show spatial distributions also focused in a different
subset of the medulla, in a shape spread along the long axis of the kidney.

– Finally, Figure 3.11(c) and (i) show highly specific spatial distributions
that seem to correspond to a blood vessel visible in the H&E stain of
Figure 3.8.

To conclude, distinct spatial distributions can certainly be observed in these data,
most of which correspond well with the histology.

As can be seen from Figure 3.9, there are many peakgroups with very high
DIPPSs, which is encouraging for the experiment, as this most likely indicates that
glycans have been successfully extracted from the tissue and measured. In order
to further support this conclusion, we can match the m/z values to the LC-MS
results, and verify their identity by in situ MS/MS. Of the top 26 peakgroups as
ranked by DIPPS, 16 were successfully matched with LC-MS and assigned potential
identifications. These 16 matches are shown in Table 3.2 with estimated mass errors
and proposed glycan compositions and structure. A legend for the symbols used to
draw the proposed glycan structures in Table 3.2 is provided in Table 3.1.

Gustafsson et al. (2015) also demonstrate that different spatial distributions can
be discovered in these data without consideration of particular masses — specifically
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they successfully separate the two cortex regions, and one region covering the whole
medulla/pelvis region. Regardless, the conclusion is that these glycan data are a
proof-of-principle that it is possible to measure consistent spatial distributions of
glycans in FFPE tissue using MALDI-MSI.

The analysis of the glycan dataset also provides some insight into the heuristic
of Definition 12. It is interesting to note that the heuristic cutoff is effectively
0.5 in this case as the 14th peakgroup, i.e. Figure 3.10(b), has a DIPPS of 0.41.
Peakgroups with high DIPPS are expected to be glycans and so are not expected to
occur in the control region at all. The DIPPS is the difference of two proportions
of occurrence, one from the subset of interest which in this case is the PNGase
F region, the other from the complement which in this case is the control region.
As glycans are expected to have a proportion of occurrence of zero in the control
region, the only factor influencing the value of their DIPPS is their proportion of
occurrence in the PNGase F treated region. Following from the discussion at the
end of Section 2.6.2, the heuristic of Definition 12 attempts to minimise the distance
between the centroid of the subset of interest and the DIPPS-template representing
the most highly ranked variables by DIPPS. The most highly ranked peakgroups
in the context of the glycan data should all be glycans, and for these peakgroups
the DIPPS reduces to the proportion of occurrence in the PNGase F treated region.
So if we begin with the empty set, the corresponding DIPPS-template will be the
vector of zeros. As we add more peakgroups, working down from the most highly
ranked by DIPPS we switch zeros into ones in the corresponding elements of the
DIPPS-template, until we reach a peakgroup with a DIPPS below 0.5 — the 14th
peakgroup in the glycan data. Switching the 14th zero to a one will increase the
distance between the centroid and the DIPPS-template rather than decreasing it,
and so the heuristic DIPPS-threshold selects the top 13 peakgroups. The above
interpretation of the heuristic is a slight oversimplification, as it implicitly assumes
that the centroid of the subset of interest is the mean. When using the cosine
distance, this interpretation is only valid if each spectrum has the same number of
peaks and therefore their binary representations have the same length. In practice
observations do not all have the same number of peaks, but this interpretation is
still useful to explore how the heuristic of Definition 12 behaves.

Symbol Monomer

N-acetylglucosamine

Fucose

Mannose

Galactose

Glucose

Table 3.1: Glycan Notation Legend
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LC-MS/MS mass
[M +Na+]+ error Proposed Proposed

Figure calculated (ppm) composition structure Xu et al. (2012)

3.9(a) 1257.41 50.2 (Hex)2 + (Man)3(GlcNAc)2 1257.42

3.9(j) 1419.47 43.9 (Hex)3 + (Man)3(GlcNAc)2 1419.48

3.10(e) 1485.53 40.9
(HexNAc)2(Deoxyhexose)1 1485.53

+ (Man)3(GlcNAc)2

3.9(d) 1581.53 35.8 (Hex)4 + (Man)3(GlcNAc)2 1581.53

3.10(k) 1647.57 39.7
(Hex)1(HexNAc)2(Deoxyhexose)1 1647.59

+ (Man)3(GlcNAc)2

3.10(b) 1663.57 37.1 (Hex)2(HexNAc)2 + (Man)3(GlcNAc)2 1663.58

3.10(f) 1688.61 31.6
(HexNAc)3(Deoxyhexose)1 1688.61

+ (Man)3(GlcNAc)2

3.9(c) 1743.57 41.7 (Hex)5 + (Man)3(GlcNAc)2 2x 1743.58

3.9(l) 1809.63 33.2
(Hex)2(HexNAc)2(Deoxyhexose)1 1809.64

+ (Man)3(GlcNAc)2

3.9(e) 1850.65 43
(Hex)1(HexNAc)3(Deoxyhexose)1 1850.67

+ (Man)3(GlcNAc)2

3.9(b) 1905.63 35.4 (Hex)6 + (Man)3(GlcNAc)2 1905.63

3.10(h) 2012.71 31.5
(Hex)2(HexNAc)3(Deoxyhexose)1 2012.72

+ (Man)3(GlcNAc)2

3.10(j) 2067.67 37.2 (Hex)7 + (Man)3(GlcNAc)2 2067.69

3.9(h) 2158.77 34.4
(Hex)2(HexNAc)3(Deoxyhexose)2 2158.78

+ (Man)3(GlcNAc)2

3.9(g) 2304.83 34.44
(Hex)2(HexNAc)3(Deoxyhexose)3 2304.83

+ (Man)3(GlcNAc)2

3.10(c) 2816.01 37.4
(Hex)3(HexNAc)4(Deoxyhexose)4

+ (Man)3(GlcNAc)2

Table 3.2: Matched masses between the in situ MALDI acquisition and the LC-
MS/MS. For proposed structures and more details, see Gustafsson et al. (2015). A
legend for the symbols used to draw the proposed structures is provided in Table 3.1.
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Figure 3.9: Spatial plots with log-intensity of peaks shown using colour — bright
colours corresponding to high log-intensities, dark to low log-intensities, and grey in-
dicating the absence of peaks. Each subplot shows a peakgroup, and the peakgroups
shown are those ranked 1 − 12 in decreasing order of DIPPS. For each peakgroup
an abundance weighted mean m/z was calculated by averaging the m/z of all peaks
in the peakgroup, weighting based on their SNR. Shown are the peakgroups with
SNR-weighted mean m/z of:

(a) 1257.47 and DIPPS 0.97.

(b) 1905.7 and DIPPS 0.93.

(c) 1743.64 and DIPPS 0.92.

(d) 1581.59 and DIPPS 0.87.

(e) 1850.73 and DIPPS 0.83.

(f) 1996.79 and DIPPS 0.83.

(g) 2304.91 and DIPPS 0.82.

(h) 2158.84 and DIPPS 0.66.

(i) 822.94 and DIPPS 0.66.

(j) 1419.53 and DIPPS 0.64.

(k) 917.35 and DIPPS 0.62.

(l) 1809.69 and DIPPS 0.6.
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Figure 3.10: Spatial plots with log-intensity of peaks shown using colour — bright
colours corresponding to high log-intensities, dark to low log-intensities, and grey in-
dicating the absence of peaks. Each subplot shows a peakgroup, and the peakgroups
shown are those ranked 13− 24 in decreasing order of DIPPS. For each peakgroup
an abundance weighted mean m/z was calculated by averaging the m/z of all peaks
in the peakgroup, weighting based on their SNR. Shown are the peakgroups with
SNR-weighted mean m/z of: .

(a) 1079.41 and DIPPS 0.59.

(b) 1663.63 and DIPPS 0.41.

(c) 2816.12 and DIPPS 0.41.

(d) 933.34 and DIPPS 0.39.

(e) 1485.59 and DIPPS 0.34.

(f) 1688.66 and DIPPS 0.28.

(g) 1095.4 and DIPPS 0.26.

(h) 2012.77 and DIPPS 0.15.

(i) 1042.58 and DIPPS 0.13.

(j) 2067.75 and DIPPS 0.12.

(k) 1647.64 and DIPPS 0.09.

(l) 1282.51 and DIPPS 0.05.

73



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

200

250

200

250

200

250

300 350 300 350 300 350 300 350

Figure 3.11: Spatial plots with log-intensity of peaks shown using colour — bright
colours corresponding to high log-intensities, dark to low log-intensities, and grey in-
dicating the absence of peaks. Each subplot shows a peakgroup, and the peakgroups
shown are those ranked 25− 36 in decreasing order of DIPPS. For each peakgroup
an abundance weighted mean m/z was calculated by averaging the m/z of all peaks
in the peakgroup, weighting based on their SNR. Shown are the peakgroups with
SNR-weighted mean m/z of: .

(a) 2507.99 and DIPPS 0.05.

(b) 2321.78 and DIPPS 0.04.

(c) 1330.8 and DIPPS 0.03.

(d) 806.98 and DIPPS 0.03.

(e) 931.56 and DIPPS 0.02.

(f) 2815.1 and DIPPS 0.02.

(g) 1992.7 and DIPPS 0.02.

(h) 829.02 and DIPPS 0.02.

(i) 1231.41 and DIPPS 0.01.

(j) 2142.84 and DIPPS 0.01.

(k) 1971.73 and DIPPS 0.01.

(l) 909.56 and DIPPS 0.01.

74



Chapter 4

Methods for Classification

In this chapter we will introduce methods for the classification of MALDI-MSI data.
In Chapter 5 we will apply these classification methods to the TMA data introduced
in Section 1.5. Classification involves the construction of a ‘classification rule’, which
is used to assign an observation to a class. In Section 4.1 we introduce three methods
from the literature as well as introducing the concept of Cross Validation (CV)
as an approach for judging the performance of a classification rule. One of the
challenges to classifying MALDI-MSI data is their high-dimensional nature, and one
approach to addressing this challenge is to use some form of variable reduction prior
to classification. In Section 4.3 we introduce two approaches to variable reduction.

In Section 4.1 and Section 4.3 we introduce some existing methods from the
literature. In contrast, in Section 4.2 and Section 4.4 we introduce original contri-
butions. In Section 4.2 we discuss some of the challenges to classifying MALDI-MSI
data, including the conflicting advantages of data-dependent vs. data-independent
discretisation of the m/z domain, as discussed in Section 3.2. Ultimately, we dis-
cuss our approach to preprocessing MALDI-MSI data prior to classification. In
Section 4.4 we introduce a new way to reduce unwanted variability in MALDI-MSI
data, which although initially computationally difficult is made tractable by the
derivation of an analytic form for the inverse of a particular class of matrices. The
derivation of the analytic form for this matrix inverse is included in Appendix C.
These sections discuss very different aspects of the same problem — classification of
MALDI-MSI data. In Section 4.5 we summarise how these different aspects connect
and allow for such classification to be performed and improved, before moving on
to Chapter 5 where we apply these ideas to the TMA data of Section 1.5.3.

4.1 Classification and Cross Validation

Classification, sometimes called discriminant analysis, can be subdivided into two
steps:

• Constructing a classification rule capable of assigning a class label to an obser-
vation. The construction of the rule is done on the basis of data with known
class membership, sometimes called ‘training’ data. This construction step is
often referred to as the ‘training’ or ‘learning’ step.

• Applying a rule to assign a class label to an observation (or observations).
This step can be further subdivided into one of two cases:

– Applying the rule to observations of known class membership in order to
assess the performance of the rule — sometimes called ‘testing’.
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– Applying the rule to observations of unknown class membership for which
a real-world decision needs to be made — i.e. prediction.

In Section 4.1.1 we consider the ‘testing’ case, in which the performance of a
classification rule is assessed by applying it to data with known class membership.
In Sections 4.1.2, 4.1.3, and 4.1.4 we consider the first step above — construct-
ing a classification rule on the basis of data with known class membership. In
Sections 4.1.2 and 4.1.3 we introduce two classical approaches that originate with
Fisher (1936) and remain canonical in the current classification literature. Finally,
in Section 4.1.4 we introduce a more modern approach to classification specifically
developed by Marron et al. (2007) to address challenges encountered in the classifi-
cation of high-dimensional data.

It should be noted that there are a plethora of approaches to classification, as
discussed in more detail in Section 1.6.2, and here we consider only a very limited
selection. We will restrict attention to linear classification approaches, but it should
be noted that many more non-linear alternatives exist. In general, linear methods are
easier to interpret, particularly in the context of high-dimensional data. Therefore
the simpler linear methods are often favoured over non-linear alternatives in High-
Dimension Low Sample Size (HDLSS), or “large p small n” contexts. We will also
be restricting attention to two-class classification, as in the endometrial data the
interest is to discriminate between patients with positive and negative Lymph Node
Metastasis (LNM) status. It should be noted that many of these classification
methods have natural generalisations to classification problems involving more than
two classes. Some of our notation will hint at these generalisations but we focus
on the two-class case as this is the case relevant to the data we consider. As we
restrict attention to the linear two-class case for classification, we introduce some
notation here specific to this case. We use this general notation to compare between
the classification approaches we consider in Sections 4.1.2, 4.1.3, and 4.1.4. Let X
be a d × n data matrix of n observations with known class labels coded as −1 or
+1. All the rules we will consider use the data X and the associated class labels to
‘train’ a rule by finding a d× 1 vector d and a scalar β. This rule then assigns class
label τ(x) to a d × 1 observation x, which can be either a column of X or a new
observation, in the following way:

τ(x) =

{
+1 if dTx+ β > 0
−1 if dTx+ β < 0

. (4.1)

Note that Equation 4.1 does not address the case when dTx + β = 0, and in
this unlikely case we do not assign a class label to x. The different classification
approaches we discuss in Sections 4.1.2, 4.1.3 and 4.1.4 each essentially constitute
different choices for d and β.

To illustrate the intuition behind the notation of Equation 4.1, we present a
short example application here. In this example we will apply LDA, as introduced
in Section 4.1.2, to a subset of Anderson’s iris data. Fisher (1936) introduced the
canonical LDA, and demonstrated its usefulness by applying it to Anderson’s iris
data. The role of LDA became so fundamental in the field of classification that
the iris data presented in the original paper has come to be known famously as
‘Fisher’s iris data’. Although Fisher is justifiably credited with the development of
the canonical LDA method, ‘Fisher’s iris data’ on the other hand should perhaps
more accurately be known as ‘Anderson’s iris data’ due to the contribution of An-
derson (1935) towards quantification of the morphological variation amongst the iris
species of the Gaspé peninsula, as Fisher (1936) himself acknowledged. Anderson’s
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Figure 4.1: Petal width vs. petal length, both measured in cm, for a subset of
Fisher’s iris data, specifically the Versicolor and Virginica irises. The discriminating
direction, dLDA, as found by LDA is shown as a solid black line. The separating
hyperplane is shown as a dashed black line, and represents the cutoff value, βLDA,
such that observations on one side of the hyperplane (on one side of βLDA on the
‘dLDA axis’) will be classified as one class and observations on the other side will be
classified as the other class.

iris data consist of 4 measurements on 50 iris flowers from each of three different
species. We will consider two of the measurements, petal length and petal width,
from observations of two species, Versicolor and Virginica. Figure 4.1 shows these
data, plotting the two measurements against each other and using colour to distin-
guish the two species. When applied to these data, the training step of LDA results
in d = dLDA and β = βLDA, which are visually represented in Figure 4.1 with solid
and dashed black lines respectively. dLDA is a vector representing the direction or
line which ‘best separates’ the two classes, as determined by LDA. βLDA can then
be though of as the point (or perpendicular hyperplane — in this case a line) along
the line/ direction defined by dLDA that best separates the two classes — again,
with ‘best’ being determined by LDA. The differences between linear classification
methods essentially boil down to different approaches to determining the meaning
of the word ‘best’ in this context. As we can see from Figure 4.1, if we were to train
and test the LDA classification rule on these data we would misclassify 5 irises —
three Virginica would be misclassified as Versicolor(two dots are overlapped close to
the dashed black line) and two Versicolor would be misclassified as Virginica.

4.1.1 Misclassification and Cross Validation

Once a classification rule has been constructed on the basis of some d × n data
X with known class membership, it is of interest to assess its performance. One
method for assessing its performance is to use the rule to assign a class label to each
of the observations of X, whose class membership are known, and count how many
have been assigned the incorrect class label. I will use the term ‘misclassification’ to
refer to this count, but in the literature it is sometimes referred to as ‘classification
error’ or ‘misclassification rate’.

When attempting to assess the performance of a classification rule, particularly
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in a situation where n < d, the misclassification rate can be misleading due to
over-fitting effects. An effective approach to addressing the issue of over-fitting is to
use two separate datasets — a ‘training’ set, and a ‘testing’ set. In practice, data
collection can often be prohibitively expensive and access to large sample sizes is
often not possible, particularly for rare diseases. Due to these limitations, we are
motivated to find a compromise somewhere between using separate ‘training’ and
‘testing’ datasets and using misclassification rate. Such a compromise would ‘make
the most’ of a small dataset better than splitting it into two separate datasets, and
would be less prone to over-fitting effects as compared to simple misclassification.

For N ≤ n, N -fold CV is an approach to finding such a compromise. N -fold CV
can be thought of as a sequence of steps:

• Construct N non-empty n-index subsets C1, C2, . . . , CN such that they partition
{1, 2, . . . , n}. These n-index subsets represent a partition of the observations in
the data, See Definition 5 on n-index subset notation. Usually, C1, C2, . . . , CN
are constructed to be as close to equal size as possible.

• Construct N classification rules τi for i = 1, 2, . . . , N where τi is constructed
or ‘trained’ on the basis of the subset⋃

j 6=i

Cj

of the data and the associated known class labels.

• Assign a class label to each observation, using τi to assign a class label to
observations in Ci for each i. As the Ci partition the data, this process will
assign each observation a unique class label. These assigned class labels can
then be compared with the known (assumed to be true) class labels, and the
number of observations whose true class labels disagree with their assigned
class labels is called the N -fold misclassification.

The largest possible N is the number of observations n, and this special N = n case
is called Leave-One-Out (LOO) CV because in this case the above steps amount
to each observation being left-out and a rule trained on the basis of the remaining
data, and tested on the left-out observation. Although the most computationally
intensive, LOO CV is appropriate for small sample sizes as it maximises the num-
ber of observations used in the construction of each rule, while still ‘testing’ each
rule on an observation not used in its construction. LOO misclassification (n-fold
misclassification) will be the main statistic by which we compare the performance
of the various classification approaches we consider.

4.1.2 Fisher’s Linear Discrimination Analysis

Although there are other linear classification methods, I will use the relatively generic
term LDA to refer specifically to Fisher’s LDA as described in this section. LDA
is described in detail by Koch (2013, Section 4.3). The motivation behind LDA
is intuitive — in order to separate our classes, Fisher (1936) suggests we aim to
maximise the between-class variability, and minimise the within-class variability.

Let X be a d × n data matrix whose columns correspond to observations of
known class membership. Let X̄ denote the mean of the columns of X, and let X[ν]

to denote the submatrix of X consisting of the columns in class ν. Let X̄ [ν] to denote
the mean of the columns of X[ν] and let nν denote the number of observations in
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class ν (i.e. the number of columns of X[ν]). Let ¯̄X denote the mean of the X̄ [ν]s
and let S[ν] denote the sample covariance matrix of X[ν].

We define the two matrices B̂ and Ŵ as

B̂ =
∑
ν

(
X̄ [ν] − ¯̄X

)(
X̄ [ν] − ¯̄X

)T
(4.2)

and
Ŵ =

∑
ν

S[ν] (4.3)

respectively. B̂ of Equation 4.2 is the sample covariance matrix of the class means,
representing between-class variability. Ŵ of Equation 4.3 is the sum of within-class
covariance matrices, and represents the within-class variability.

LDA solves the optimisation problem of finding the direction (unit length) vector
that maximises the between-class variance while minimising the within-class variance
of the projected data (projected into that direction). It turns out that the optimal
direction vector v is the eigenvector dLDA associated to the largest eigenvalue of the
matrix:

Ŵ−1B̂. (4.4)

Koch (2013, Section 4.3) includes a proof that the eigenvector dLDA is the solution
to this optimisation problem.

It is important to note that calculating dLDA requires that Ŵ be invertible and
in HDLSS cases, i.e. n < d, this is not possible. I present a more precise discussion
of the conditions when Ŵ cannot be invertible in Section 4.1.3.

Also, note that dLDA is only unique up to sign, so if we use the symbols ‘+’ and
‘−’ to denote the two classes +1 and −1 respectively, we choose the sign of dLDA

such that
dTLDAX̄

[+] > dTLDAX̄
[−].

The LDA classification rule τLDA, constructed from X and associated class labels, is
of the general form of Equation 4.1 and assigns the class label to a d×1 observation
x

τLDA(x) =

{
+1 if dTLDAx− dTLDA

¯̄X > 0

−1 if dTLDAx− dTLDA

¯̄X < 0
. (4.5)

4.1.3 Naive Bayes

‘Naive Bayes (NB)’ refers to an approach to modifying an existing classification
method and is not a classification method itself. I use the term ‘NB’ to refer specifi-
cally to the NB variant of LDA which I describe in this section. NB modifies LDA in
a way that allows it to function when Ŵ of Equation 4.3 is not invertible. As men-
tioned in Section 4.1.2, requiring that Ŵ of Equation 4.3 be invertible is problematic
when n < d. Specifically, if we let κ denote the number of classes,

rank Ŵ ≤
∑
ν

min (nν − 1, d) simplifies to rank Ŵ ≤ n−κ when max
ν

nν−1 ≤ d.

(4.6)
The inequality of Equation 4.6 means that if n− κ < d then Ŵ is guaranteed to be
singular.

The NB variant of LDA essentially makes the ‘naive’ assumption that variables
are independent, and from this assumption it follows that their covariance should be
zero. In practice, instead of calculating the direction vector from the matrix Ŵ−1B̂
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as in LDA, the direction vector for the NB variant dNB is instead calculated as the
eigenvector corresponding to the largest eigenvalue of the matrix

(diag Ŵ )−1B̂. (4.7)

In the case that the variables are in fact independent, LDA reduces to NB.
Similarly to LDA we choose the sign of dNB such that

dTNBX̄
[+] > dTNBX̄

[−].

The NB classification rule τNB, constructed from X and associated class labels, is of
the general form of Equation 4.1 and assigns the class label to a d × 1 observation
x

τNB(x) =

{
+1 if dTNBx+ dTNB

(
X̄ [+] − X̄ [−]

)
> 0

−1 if dTNBx+ dTNB

(
X̄ [+] − X̄ [−]

)
< 0

. (4.8)

Because diag Ŵ is a diagonal matrix, it is invertible so long as there are no
variables in our dataset X that are constant in all X[ν] (zero within-class variance).
The fact that diag Ŵ is always invertible means that NB classification can be applied
to cases with n − κ < d, where LDA cannot be used. Similarly to LDA, NB can
be easily extended to more than two classes but we will only be considering the
two-class case.

4.1.4 Distance Weighted Discrimination

Distance Weighted Discrimination (DWD) was introduced by Marron et al. (2007)
as an approach to address ‘data-piling’ which may occur in Support Vector Machine
(SVM) approaches. Data-piling occurs when multiple high-dimensional observations
are projected to the exact same value, and is often a symptom of over-fitting effects in
HDLSS data. As data-piling can be indicative of over-fitting effects, it is undesirable.
We have presented linear classification in Equation 4.1 in terms of the projection of
data into a direction vector d. The motivation for DWD is based on an alternative
perspective for thinking about linear classification rules in which we instead think
about a hyperplane separating our classes in high-dimensional space, and consider
the ‘residuals’ of the data to this hyperplane. These two perspectives of linear
classification rules are equivalent. A hyperplane is a space of dimension one less
than the dimension of the space within which it exists. If we consider d to be a
normal vector to the hyperplane, or the hyperplane to be the space of all vectors
orthogonal to d we can see that the projection of data onto the direction d are
equivalent to the residuals of the same data from the hyperplane. To be precise,
the residuals are the projection of the data onto the direction d plus a scalar β.
The scalar β represents the location of the hyperplane on the line in the direction of
d. In HDLSS data it is often possible to linearly separate the two classes perfectly
— i.e. to place a hyperplane such that all observations from one class are on one
side of the hyperplane, and all observations from the other class are on the other
side. In the case that the classes can be separated perfectly, a popular approach
is to choose a hyperplane that maximises the minimum residual. This approach
either only considers the smallest residual, or heavily weights the smallest residuals.
Particularly in HDLSS data, this heavy weighting of the smallest residuals can cause
multiple residuals to be exactly equal smallest, i.e. data-piling. DWD attempts to
avoid the data-piling caused by this max-min approach by weighting larger residuals
more heavily. DWD weights residuals based on their reciprocals — minimising the
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sum of reciprocal residuals, with an added penalty factor for observations on the
wrong side of the hyperplane.

We now formulate DWD precisely, but first introduce some notation. If we
denote the ith d× 1 observation xi, and the ith class label yi (with possible values
of −1 and +1), we can define the ith residual

r∗i = yi(d
Txi + β).

When the classes are perfectly split all the r∗i s can be positive for particular choices
of hyperplane, i.e. d and β. We define perturbed residuals

ri = r∗i + εi

by adding positive error terms εi to the residuals — allowing the perturbed residuals
to be positive even when the hyperplane does not split the classes perfectly, and
thereby allowing us to pose the optimisation problem as in Equation 4.9. If we
denote the vector of ris r and the vector of εis ε, then given some penalty parameter
C the DWD approach finds a solution to the optimisation problem:

arg min
d, β, r, ε

∑
i

(
1

ri
+ Cεi

)
(4.9)

under the conditions

||d||2 ≤ 1, ri ≥ 0, and εi ≥ 0 ∀i.
Some comments:

• The condition that the vector d be a unit vector is relaxed to |d| ≤ 1 which
makes the optimisation problem convex, but if the classes are perfectly sep-
arable the solution for d will be a unit vector for a sufficiently large penalty
factor C.

• For xi that lie on the correct side of the hyperplane, εi will be zero for a
sufficiently large penalty factor C.

• We use the penalty factor recommended by Marron et al. (2007) — 100 divided
by the median pairwise Euclidean distance between observations in one class
to observations in the other class.

• As long as the penalty factor C is not too large, DWD will sometimes choose
a hyperplane that does not perfectly split the observations, even in situations
when it is possible to do so — something the max-min approach mentioned
above will never do.

Let d = dDWD and β = βDWD be those values found to optimise the problem
formulated in Equation 4.9. The DWD classification rule τDWD, constructed from X
and associated class labels, is of the general form of Equation 4.1 and assigns the
class label to a d× 1 observation x

τDWD(x) =

{
+1 if dTDWDx+ βDWD > 0
−1 if dTDWDx+ βDWD < 0

. (4.10)

The reciprocal weights used in the optimisation problem of Equation 4.9 cause
DWD to take into account how well the two classes are separated overall, with less
emphasis placed on the single smallest residual, in particularly when there are many
similarly small residuals. Compared with the simple max-min approach mentioned
above, this weighting used in Equation 4.9 results in DWD being less susceptible
to over-fitting effects and data-piling, which can cause DWD to be particularly
advantageous in HDLSS scenarios.
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4.2 Preprocessing MALDI imaging data for Clas-

sification

In order to apply the methods introduced in Sections 4.1 and 4.3 to MALDI-MSI
data, the data needs to be preprocessed and brought into a form such that these
methods will be applicable. This involves two main points that require consideration:

• Variables — what are the measurements going to be. This point boils down
to a question of how the m/z domain ought to be discretised.

• Observations — what are the objects to be classified. Spectra are perhaps not
appropriate, as the objects for which real-world classification is of interest are
the patients. So, a patient-wise representation of the data is needed.

We discuss our approach to each of these two points in Section 4.2.1 and Section 4.2.2
respectively.

In Chapter 2 and Chapter 3 we dealt primarily with the binary representation
of MALDI-MSI data — sidestepping the problem of noise in other measures of peak
presence (such as intensity, or SNR). Transforming the data to binary representation
involves a significant loss of information, but we demonstrated that tissue types can
still be effectively separated using the binary data despite this loss of information.
It is possible, however, that this lost information could be of use in improving clas-
sification results. As our aim is to explore different approaches to the classification
of MALDI-MSI data and to determine if any such approaches consistently perform
better than others we will consider a variety of data types:

• Binary (presence/ absence of peaks),

• Intensity (peak height),

• Area (integrated peak volume),

• SNR, and

• Log-Intensity (log(I + 1) where I is intensity).

The non-binary measures of peak-presence could potentially contain information
important to the classification problem, and comparing classification performance
on these different data-types ought to provide some insight into this.

4.2.1 Variables (Binning and Majority Rule)

We discussed the advantages and disadvantages of using data-dependent discretisa-
tion for constructing variables in Section 3.2. In the context of classification, it is
appropriate to use data-independent discretisation (i.e. binning), as this allows for
classification rules to be applied to new data unambiguously, as the same discreti-
sation can be applied to any data. If data-dependent discretisation was used, how
to apply a classification rule to new data would be somewhat ambiguous, and using
data-independent discretisation avoids this problem.

However, as discussed in Section 2.6.2, binning can potentially remove important
information in a small number of variables for which bin edges happen to fall in a
region of high peak-density. In classification this small loss of information could
potentially impact results, if the variables affected coincide with variables impor-
tant to the classification problem in question. In order to address this potential loss
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of important information, we suggest using several shifted bin locations, as explic-
itly defined in Algorithm A.3, applying any given classification approach to each
shifted-bin dataset in parallel, and finally defining a ‘meta classification rule’ as the
classification rule that assigns the class label agreed upon by the majority of the
shifted-bin analyses. We will use three shifted-bin analyses as this will always guar-
antee a unique majority. We carry over the choice to use a bin size of b = 0.25 from
the analysis of the ovarian cancer data and the discussion thereof in Section 2.3.1.
All classification results we present in Chapter 5 are the result of using a ‘meta
classification rule’ on three shifted-bin analyses resulting by bin location shifts of
− b

3
, 0, and + b

3
as per Algorithm A.3.

4.2.2 Observations (Averages and Cancer Annotation)

Until now all the data we have presented have had spectra as observations. In the
endometrial data we wish to classify patients as LNM positive or negative, and so it
is natural for observations to correspond to patients. The simplest way to construct
such a ‘patient-wise’ representation is to average the spectra from each patient.
We call this average spectra representation the ‘patient-wise summarised data’ or
‘patient data’, and exclusively use this representation of the data when considering
any classification.

Note that so far we have predominantly been using the binary data, in which
case these patient-wise averages produce within-patient proportions of occurrence.
But, as mentioned in Section 4.2.1, for classification we will also consider using non-
binary measures of peak-presence, and in these cases it is not obvious how to treat
peak-absence, which is essentially a missing value problem. We present two options,
and we will consider results of applying both in Chapter 5:

• Use the value zero to represent the absence of a peak.

• For each variable, average only present peaks (ignoring absence).

The two approaches above are not necessarily the best, but are the simplest. Note
that all these analyses are on the basis of the peaklist data. Which peaks are ‘present’
and ‘absent’ is defined by the peak-picking algorithm, which uses a SNR threshold.
The above two points could be interpreted in terms of this threshold rather than in
terms of peak absence, e.g. ‘the value of peaks with a SNR below the threshold are
set to zero’ or ‘only peaks with a SNR above the threshold are averaged’.

One of the advantages of MSI data is the fact that spatial information that sepa-
rates tissue types is preserved, as discussed in Chapters 2 and 3. Averaging spectra
in order to produce a patient-wise representation of the data loses all information
about within-patient tissue heterogeneity. It is natural to presume results could
be improved by incorporating histological information separating tissue types, and
thereby reducing variability in the patient data due to tissue heterogeneity. We
take an approach similar to that of Mascini et al. (2015) — we have a pathologist
annotate the tumour regions on an image of the H&E stained tissue, and restrict at-
tention to spectra from tumour regions. We expect that restricting to the annotated
spectra only should improve results as it should reduce the variability caused by tis-
sue heterogeneity — comparing tumour tissue from one patient to tumour tissue
of another patient should allow for differences between the patients to be detected
more easily than including all the tissue from each patient. We present results of
classification of the cancer annotated data in Section 5.3 and observe that although
improvement is seen in some cases, in other cases restricting to the annotated spec-
tra only can worsen results. The fact that restricting to cancer annotations does
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not strictly improve classification results is surprising. One possible explanation for
this surprising result can be observed from Table 1.5 in that there are a number
of patients with very few cancer annotated spectra, so restricting to only cancer
annotated spectra could artificially reduce our sample size, thereby explaining the
increase in misclassification. An alternative explanation is that there could be useful
information available in surrounding non-tumour tissues. Evidence supporting this
intriguing possibility exists, for example Oppenheimer et al. (2010) have shown that
histologically normal tissue adjacent to renal carcinoma tumours express many of
the molecular characteristics of the tumour. This is a possibility that, as Oppen-
heimer et al. (2010) note, warrants further research as it could potentially relate
directly to tumour recurrence post resection, which is a significant factor in patient
survival.

4.3 Dimension Reduction

As mentioned in Section 4.1.2, classic classification methods such as LDA fail for
HDLSS data. One approach to addressing this failure is to transform the data into
a low-dimensional representation, typically a subspace, prior to classification. We
will consider two methods for such dimension reduction:

• PCA, and

• Variable selection based on Canonical Correlation Analysis (CCA) ranking.

PCA is a commonly used variable reduction method, see Koch (2013, Chapter 2
and Section 13.3.2). PCA has been used for dimension reduction extensively, and
specifically in the context of TMA MALDI-MSI data Mascini et al. (2015) have
suggested PCA dimension reduction followed by LDA. CCA is an established method
in multivariate statistics, see Koch (2013, Chapter 3). Koch and Naito (2010) have
suggested the use of CCA for variable ranking, and we use an approach similar to
that which they suggest. The slight deviation between our approach and that of
Koch and Naito (2010) is that we centre the class labels, while Koch and Naito
(2010) suggest using uncentred labels. We use an approach more similar to that
described in Koch (2013, Section 13.3.1), but the difference between our approach
to that of Koch and Naito (2010) is trivial in terms of practical results.

We introduce the known ideas of PCA and CCA in Section 4.3.1 and Section 4.3.2
respectively. We apply these variable reduction approaches to the endometrial data
of Section 1.5.3 and consider the effect they have on the classification performance
in Section 5.2.

4.3.1 PCA

Let S be the d× d sample covariance matrix of a d× n centred data matrix X, and
let S have rank r. As X is centred, S = 1

n−1
XXT . Let the eigendecomposition, often

called spectral decomposition, of S be

S = ΓΛΓT , (4.11)

where Γ is a d × r matrix whose columns are eigenvectors of S, and Λ is an r × r
diagonal matrix of the eigenvalues of S λ1, λ2, . . . , λr such that λ1 ≥ λ2 ≥ . . . ≥
λr > 0. Note that for the patient-data we consider for classification, as described
in Section 4.2.2, the matrix S is singular as n << d. We call the columns of Γ
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principal component directions, and we project the data into these directions in
order to produce the PCA dimension reduced data of Definition 15.

Definition 15. k-dimension reduced PCA data: Given a d × n centred data
matrix X, covariance matrix S = 1

n−1
XXT and the eigendecomposition notation of

Equation 4.11, Let the d× k matrix Γk consist of the first k columns of Γ. Then for
a given number of components k, the k-dimension reduced PCA data is

ΓTkX.

Note that Definition 15 is a function of the number of dimensions reduced to, k,
and that each of the resulting dimensions correspond to linear combinations of the
original variables. Each of these dimensions, or rows of the dimension reduced PCA
data matrix, correspond to the projection of the original centred data into a principal
component direction and are often called principal component scores. These new
dimensions are not immediately interpretable as m/z values, as they correspond to
combinations of many m/z values and do not have a direct interpretation in MS
terms.

It is also quite common to produce the scaled data,

(diagS)−
1
2X,

where diagS is a diagonal matrix whose diagonal is the same as that of S, and apply
PCA to the scaled data. The covariance matrix of the scaled data is the correlation
matrix of the original matrix. We do not consider PCA on the scaled data here as
our focus is on comparing PCA to other methods, which are likely to have a bigger
impact on the classification results than scaling would.

For a detailed discussion of the interpretation of PCA, including proofs for its
theoretical properties, see Koch (2013, Chapter 2). In short, it can be shown that
the k-dimension reduced PCA data maximises the variability retained from the orig-
inal data. One of the problems with PCA as a dimension reduction method is that
the variables in the transformed data do not have an obvious interpretation as they
are linear combinations of the original variables. Furthermore, in a classification
context the ‘highest variance’ directions are not necessarily the ‘best’ directions —
they are not necessarily the dimensions most relevant to the classification problem
in question. The CCA-based approach we describe in Section 4.3.2 is an example of
an approach that attempts to leverage the extra information contained in the known
class labels in order to find variables that are the most relevant to the classification
problem. We would expect a method that makes use of the extra information con-
tained in the class labels to result in better classification performance, and indeed
the results in Chapter 5 reflect that the CCA-based approach results in better clas-
sification performance than PCA dimension reduction. PCA variable reduction is
nonetheless a staple variable reduction method, and a useful baseline for comparison
to other approaches.

4.3.2 CCA

As mentioned in Section 4.3.1, PCA is a purely variance based technique, using the
variance of the data matrix X without using the class labels at all. In some con-
texts variance based variable reduction can be appropriate, for example, clustering.
In classification however, there is no guarantee that the information differentiating
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the classes will be contained in higher-variance components. Leek et al. (2010) dis-
cuss how exploratory analyses using PCA and other methods, including hierarchical
clustering, can reveal that some of these high-variance components often represent
unwanted variability such as batch effects — effects caused by differences in the
environment during data acquisition, trace-contaminants in reagents, systematic
operator errors, and other similar effects.

In contrast to PCA, the CCA-based variable ranking we propose in this section
takes the class labels into account when ranking variables in order of importance.
CCA is a general method for finding strong correlations between two subsets of
variables. CCA is of particular interest when there is a natural partitioning of
the variables by context. For example, Witten and Tibshirani (2009) demonstrate
this principal on a dataset including measurements of both gene expression and
DNA copy number for the same samples. Specifically, Witten and Tibshirani (2009)
use an extension of CCA to find sparse linear combinations of these two sets of
measurements that are highly correlated to each other. In our classification context
we can consider the class labels as one set of variables, and the MALDI-MSI data
as the other. In essence, the CCA-based variable ranking we propose ranks the
variables of our data based on their correlation to the class labels.

In this section we introduce CCA in two parts. Firstly we introduce CCA in
general. Secondly, we consider CCA in the specific context of two-class classification,
and many of the general expressions simplify in this context.

In general

Let X1 and X2 be d1 × n and d2 × n data matrices respectively, corresponding to
two sets of measurements or variables on the same n subjects or observations. For
convenience, let X1 and X2 be centred — each row has mean zero. Then the sample
covariance matrix of[

X1

X2

]
is

1

n− 1

[
X1

X2

] [
X1

X2

]T
=

1

n− 1

[
X1XT

1 X1XT
2

X2XT
1 X2XT

2

]
, (4.12)

which we will denote as [
S1 S12

ST12 S2

]
. (4.13)

As mentioned in Section 4.3.1, we will often be dealing with singular covariance
matrices in the classification setting. Let

S1 = Γ1Λ1ΓT1 and S2 = Γ2Λ2ΓT2

be the eigendecompositions of S1 and S2 respectively, analogously to the eigende-

composition of S in Equation 4.11. We use the notation S
− 1

2
1 and S

− 1
2

2 , and in order
to avoid ambiguity in the cases when S1 or S2 are singular, we let

S
− 1

2
1 = Γ1Λ

− 1
2

1 ΓT1 and S
− 1

2
2 = Γ2Λ

− 1
2

2 ΓT2 . (4.14)

The expressions for S
− 1

2
1 and S

− 1
2

2 in Equation 4.14 remain well defined in the case
that either S1 or S2 is singular because of the way we introduced eigendecomposition
in Equation 4.11 — that is if we let r1 and r2 be the ranks of S1 and S2 respectively,
then Λ1 and Λ2 are r1 × r1 and r2 × r2 diagonal matrices of non-zero eigenvalues
respectively, and similarly Γ1 and Γ2 are d1×r1 and d2×r2 matrices of eigenvectors.
Allowing Λ1 and Λ2 to be of lower dimension, r1 or r2 instead of d, and allowing
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Γ1 and Γ2 to be non-square is what allows us to define S
− 1

2
1 and S

− 1
2

2 in such a way
that they are still defined even when S1 or S2 is singular.

Given the expressions for S
− 1

2
1 and S

− 1
2

2 in Equation 4.14 we let the canonical
correlation matrix

C = S
− 1

2
1 S12S

− 1
2

2 ,

as in Koch (2013, Equation (3.13)). C is d1 × d2. Let

C = PΥQT

be the singular value decomposition of C. For details on singular value decomposi-
tion see Koch (2013, Definition 1.12). If we let r be the rank of C then P , Υ, and
Q are d1 × r, r × r and d2 × r respectively. Let the diagonal entries of the diagonal
matrix Υ be denoted υ1 ≥ υ2 ≥ . . . ≥ υr, and the columns of P and Q p1,p2, . . . ,pr
and q1, q2, . . . , qr respectively.

CCA is related to what we will call the sphered data,

S
− 1

2
1 X1 and S

− 1
2

2 X2, (4.15)

assuming that these inverses exist, and recalling that X1 and X2 denote the cen-
tred data. p1 and q1 are direction (unit) vectors such that the projection of the
sphered datasets described in Equation 4.15 into these two directions respectively,

i.e. pT1 S
− 1

2
1 X1 and qT1 S

− 1
2

2 X2, are maximally correlated to each other. The sphered

data and the original data are related through the matrices S
− 1

2
1 and S

− 1
2

2 , and these
matrices can be used to transform the direction vectors pk and qk into the vectors

φk = S
− 1

2
1 pk and ψk = S

− 1
2

2 qk (4.16)

respectively. Projecting the sphered data of Equation 4.15 into the vectors pk and
qk is equivalent to projecting the original data X1 and X2 into the vectors φk and
ψk. As the φks and ψks have this interpretation in terms of projecting the original
data, they are commonly used in CCA rather than the pks and qks as introduced
here and in Koch (2013, Chapter 3). It should be noted however that the φks and
ψks are not unit vectors as the pks and qks are. Also, the φks and ψks do not have
the interpretation as left and right eigenvectors of C as the pks and qks do. The
absolute values of the entries of φ1 and ψ1 can give us rankings of the variables of X1

and X2 respectively in order of their contributions towards the strongest correlation
between the two sets of measurements or variables. We will use these CCA-based
rankings for variable ranking prior to classification.

In two-class classification

There are a number of approaches to using the concepts from CCA as introduced
above for variable ranking in a classification context. For example, Koch (2013,
Section 13.3.1) suggest a variable ranking approach that directly applies the general
approach we have introduced above to a regression context, while in Koch (2013,
Section 13.3.3) a slightly modified approach is suggested for variable ranking in
a classification approach. The approach we use is essentially that of Koch (2013,
Section 13.3.3) but with centred class labels. There is some ambiguity concerning
how to numerically code classes — which are categorical in nature but must be
represented numerically in order to be used in the context of CCA. In the two-class
case, Marron et al. (2007) uses numeric labels of −1 and +1 as this is convenient
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for the formulation of their optimisation problem discussed in Section 4.1.4. Koch
(2013) and some references therein use labels of 0 and 1 as this can simplify the
formulation of methods such as LDA. Which of these two options is better is not
obvious. One of the reasons we modify the approach suggested in Koch (2013,
Section 13.3.3) and use centred class labels is that using centred class labels causes
our variable ranking method which we describe here to be invariant to choice of class
labels — making this ambiguity irrelevant in the two-class case. The deviation we
make from the suggested approach of Koch (2013, Section 13.3.3) is minor, and we
would not expect our approach to produce greatly different results to that of Koch
(2013, Section 13.3.3).

Let X1 = X be our d× n (centred) data matrix, and X2 = Y be our 1× n vector
of (centred) class labels. The two-class case is particularly simple, as we can let Y
be a 1 × n binary vector whose entries are either −2n+

n
or 2n−

n
, coding for the two

classes (of sizes n− and n+ respectively). These values of Y correspond to using
class labels of −1 and +1, and then centring. Following the same process as in the
general case above, the sample covariance matrix of[

X
Y

]
is

1

n− 1

[
XXT XYT

YXT YYT

]
=

[
SX SXY
STXY SY

]
.

Note that these terms are simplified in this context — SXY is a d × 1 vector, and
SY is the scalar 4n−n+

n(n−1)
corresponding to the variance of the entries of Y. Using this

notation, let

SX = ΓΛΓT

be the eigendecomposition of SX . The canonical correlation matrix is found in the
same way,

C = S
− 1

2
X SXY S

− 1
2

Y ,

but is now a d×1 vector, so p1 is simply C normalised to length one and φ1 = S
− 1

2
X p1

as in Equation 4.16. We use the absolute values of the entries of φ1 to construct
a ranking of the variables of X, and select the highly ranked variables to make the
k-variable selected CCA data of Definition 16. Note that

φ1 = S
− 1

2
X p1 = S

− 1
2

X

(
1

|C|
C

)
=

1

|C|
S
− 1

2
X

(
S
− 1

2
X SXY S

− 1
2

Y

)
∝ S−1

X SXY . (4.17)

Because we only use φ1 for ranking variables, the ranking is invariant to multi-
plying φ1 by a non-zero constant, and so we can use the simplified expression in
Equation 4.17 for our ranking.

Definition 16. k-variable selected CCA data: Given a d×n centred data matrix
X, a 1 × n vector of centred class labels Y and covariance matrices SX = 1

n−1
XXT

and SXY = 1
n−1

XYT , calculate the d × 1 ranking vector φ = S−1
X SXY . If SX is

singular, let S−1
X be the Moore-Penrose psuedoinverse. For details on the Moore-

Penrose psuedoinverse, see Penrose (1955); Ben-Israel and Greville (2003). Let d
be a d× 1 vector containing ones in positions corresponding to the k elements of φ
with highest absolute values and zeros elsewhere. The k-variable selected CCA data
is the submatrix T Td X.

See Definition 7 for details on the submatrix notation used in Definition 16. In
comparison to the PCA dimension reduction approach of Section 4.3.1, the CCA-
based variable selection approach of Definition 16 results in data whose variables
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can be directly interpreted as corresponding to m/z values, rather than linear com-
binations of m/z values. Also, we expect the CCA-based approach to dimension
reduction to produce better classification results than the PCA approach of Sec-
tion 4.3.1 because CCA uses the information we have from the class labels. The
results we present in Chapter 5 confirm this expectation.

4.4 Normalisation

In Chapter 2 we motivate the use of the binary data by talking about the noise that
is typically inherent in non-binary measures of peak-presence. However, as discussed
in Section 4.2, we will consider non-binary measures of peak-presence as well as the
binary data. As such in this section we introduce a new approach that attempts to
‘normalise’ these non-binary measures of peak-presence using the internal calibrants
of Gustafsson et al. (2012) in an attempt to reduce unwanted variability. We will
refer to intensity, but the same approach could equally apply to any other measure
of peak presence (SNR, or integrated area for example).

Both peptide applications we consider, ovarian and endometrial cancer, have in-
ternal calibrants added in the sample preparation step. These internal calibrants are
used to calibrate the m/z measurements, as described by Gustafsson et al. (2012).
The internal calibrants are sprayed onto the tissue evenly during sample preparation
and so we know that there should be the same concentration of each calibrant at any
given location on the tissue. Given the calibrant concentrations should be constant,
we would expect the corresponding intensities to be constant. We assume that the
overall intensity measurements over an entire spectrum are all affected to the same
degree by extraneous variables such as matrix crystallisation and total signal sup-
pression. We can use the calibrant intensities to estimate this systematic effect for
each spectrum and adjust for these effects. We call this adjustment ‘normalisation’.

4.4.1 The Model

The underlying model for our data is

xij = µijsjεij (4.18)

for the observed intensity, xij, of variable or molecular species (m/z ) i in spectrum
j, where µij is an intensity representative of the true concentration of the species
i present in spectrum j, sj is the systematic error we would like to estimate and
compensate for, and εij is random noise, which we will assume to be log-normal,
as is fairly typical in such data. The fact that sj is independent of variable i
reflects our assumption that all intensity measurements in any given intensity should
be affected to the same degree. Similarly, if we let D denote the set of variables
that correspond to the internal calibrants, then for i ∈ D we can represent our
assumption that calibrants are evenly distributed across the tissue by omitting the
spectra dependence, i.e. µij = µi. These two assumptions are what allow us to
simplify the model sufficiently such that it is no longer over-parametrised and can
now actually be fit to data in order to estimate the parameters we are interested in,
i.e. the sj.

We consider the log-model for the calibrants,

log(xij) = log µi + log sj + log εij i ∈ D. (4.19)
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Let us have n spectra, d calibrants, and let us assume each spectra contains all
d calibrants. This log-model can be written using matrices as

y = Xβ + ε, (4.20)

where the dn × (n + d − 1) design matrix X is defined in Equation 4.21, and the
(n+ d− 1)× 1 parameter vector β, and the dn× 1 response vector y are defined in
Equation 4.22.

X =



1 0 . . . 0 0 0 0 . . . 0
0 1 0 0 0 0 . . . 0
...

. . .
...

...
...

0 0 . . . 1 0 0 0 . . . 0
1 0 . . . 0 1 0 0 . . . 0
0 1 0 1 0 0 . . . 0
...

. . .
...

...
...

0 0 . . . 1 1 0 0 . . . 0
1 0 . . . 0 0 1 0 . . . 0
0 1 0 0 1 0 . . . 0
...

. . .
...

...
...

0 0 . . . 1 0 1 0 . . . 0
...

...
...

. . .
...

1 0 . . . 0 0 0 0 . . . 1
0 1 0 0 0 0 . . . 1
...

. . .
...

...
...

0 0 . . . 1 0 0 0 . . . 1



, (4.21)

β =



log(µ1) + log(s1)
log(µ2) + log(s1)

...
log(µd) + log(s1)
log(s2)− log(s1)
log(s3)− log(s1)

...
log(sn)− log(s1)


, y =



log(x11)
log(x21)

...
log(xd1)
log(x12)
log(x22)

...
log(xd2)

...

...
log(x1n)
log(x2n)

...
log(xdn)



. (4.22)

ε of Equation 4.20 is assumed to be a vector of independent identically distributed
normal variables (white noise). The formulation of Equation 4.20 is the standard
form for a linear regression model with two categorical independent variables —
in this case, the two categorical variables essentially correspond to spectrum and
calibrant. The parametrisation defined by our choice of β in Equation 4.22 is not
unique, but the estimation it yields for the sj is unique. The rows of X and y as in
Equations 4.21 and 4.22 correspond to the individual intensity measurements and
are split into n blocks of d, each block corresponding to a spectrum, and within each
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block each row corresponding to a calibrant. The precise form of X is determined
by the parametrisation chosen for β and the model assumptions discussed above.
For more details on regression see Casella and Berger (2001). In this context, it is
sufficient to understand that this formulation allows for the parameters of interest
to be estimated within a well established statistical paradigm. Specifically, from
linear regression we know that the least squares estimate for the parameter vector
β is

β̂ = (XTX)−1XTy. (4.23)

Most linear regression implementations involve numeric computation of the matrix
inverse (XTX)−1, which here is a (n+ d− 1)× (n+ d− 1) matrix. In our case n >
10, 000, which leads to very slow computation. This matrix is of a very particular
block-matrix form, for which we have derived an analytic form for its inverse — see
Appendix C for the derivation. Having an analytic form for this inverse allows for
much faster computation, as numeric estimation is not necessary, and this speeds
up computations by several orders of magnitude. Note that for this design matrix
X,

XTX =



n 0 . . . 0 1 1 . . . 1
0 n 0 1 1 . . . 1
...

. . .
...

...
. . .

...
0 0 . . . n 1 1 . . . 1
1 1 . . . 1 d 0 . . . 0
1 1 1 0 d . . . 0
...

. . .
...

...
. . .

...
1 1 . . . 1 0 0 . . . d


,

is of the form described in Equation C.1 — specifically XTX = A(n, d, d, n − 1).

The general result from Appendix C gives us the relatively simple form

[
(XTX)−1

]
ij

=



d+n−1
dn i, j ∈ [1, d] i = j

2
d i, j ∈ [d+ 1, d+ n] i = j

n−1
dn i, j ∈ [1, d] i 6= j

1
d i, j ∈ [d+ 1, d+ n] i 6= j

−1
d

i ∈ [1, d], j ∈ [d+ 1, d+ n]
j ∈ [1, d], i ∈ [d+ 1, d+ n]

or

This relatively simple form for (XTX)−1 allows us to derive (XTX)−1XT by ma-
trix multiplication and from this we can use Equation 4.23 to find analytic solutions
to the least squares estimates of the parameters:

̂log(µ1) + log(s1) = x̄i +
1

d

d∑
k=1

(log(xk1)− x̄k)

and

̂log(sj) + log(s1) =
1

d

d∑
i=1

(log(xij)− x̄i)−
1

d

d∑
i=1

(log(xi1)− x̄i),
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where

x̄i =
n∑
j=1

log(xij)

These analytic solutions to the least squares estimates agree with the intuitive esti-
mates

̂log(µi) = x̄i and ̂log(sj) =
1

d

d∑
i=1

(log(xij)− x̄i). (4.24)

Ultimately all we are interested in is estimating the sj, which represent the

unwanted variability in our data we wish to adjust for. The expression for ̂log(sj)

as in Equation 4.24 provides us with a way to estimate these sj as ŝj = e
̂log(sj),

and all the preceding work in this section was simply about justifying the choice to
estimate the sj in this way. From here onwards, all that we are interested in is the
fact that we can estimate sj using the intensity measurements of the calibrants D,
and we can adjust for unwanted variability in the data by replacing the intensity
measurements in our data with the normalised intensities

x∗ij =
xij
ŝj
. (4.25)

4.4.2 Proof of Principle on the motivating dataset A3

In Section 4.4.1 we established a model that we can use to adjust for unwanted
variability by using the intensity measurements of our calibrants D to obtain the
normalised intensities (Equation 4.25). Now we are interested in applying this to
a motivating dataset to validate that the method actually reduced the unwanted
variability.

A natural way to test the performance of this normalisation would be to look
at a m/z corresponding to a peptide that is uniformly distributed across the tissue
before and after normalisation and (hope to) observe a reduction in the variabil-
ity or spread of the intensity values observed for that m/z value. However, the
only peptides expected to be uniformly distributed across the tissue are the internal
calibrants. As the internal calibrants are used to estimate the parameters in the
normalisation model, looking at the internal calibrants before/ after normalisation
would give an optimistic measure of the effectiveness of the normalisation. We use
an approach similar to that of LOO CV as described in Section 4.1.1 where for each
of the four calibrants we fit the normalisation model using the other three and nor-
malise the intensities of the calibrant we left out of the model-fit step. We can then
consider the intensities of the internal calibrants before and after normalisation and
thereby estimate the effectiveness of the normalisation. This estimation should in
fact be conservative, as in each case the model-fit is done on the basis of three cali-
brants. When the normalisation is done for the whole data, the model-fit step will
be performed using all four calibrants, which should give better estimates than using
only three. Figure 4.2 demonstrates the expected trend in these results — normal-
isation causing a reduction in the variability and range of intensity values for each
calibrant. Although encouraging, the reduction in variability shown in Figure 4.2
is small relative to the total variability. We show the effect the normalisation has
on classification results in Section 5.3. Normalisation improves classification results
in some cases, but in other cases it worsens results. Overall, there does not seem
to be a consistent trend showing that normalisation has an effect on classification
results, although it is possible that our sample-size is simply too small to detect
such a trend.
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Figure 4.2: Boxplots of log-intensity on the y-axis is plotted for the four calibrants
before and after normalisation. The x-axis separates between the calibrants, al-
ternating between before-normalisation and after-normalisation results. For each
calibrant, the normalisation model is fit using the other three calibrants, so as to
avoid over-fitting effects. Spectra are restricted to only those including peaks for all
4 calibrants.
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4.5 Summary

In this chapter we introduced and discussed a number of different points relating to
the classification of MALDI-MSI data. In Chapter 5 we will apply these ideas to the
TMA data of Section 1.5.3, evaluating and comparing many different classification
schemes, but first here we will summarise the points covered in this chapter as they
relate to the results in Chapter 5. In Section 4.1 we introduced CV and three
classification methods: LDA, NB and DWD. We will exclusively use LOO CV for
evaluating the performance of the various classification schemes we consider, and
in each case we will compare the performance of the three classification methods
introduced.

In Section 4.2 we introduced our approach to preprocessing MALDI-MSI data
prior to classification, which involves two main discussion points: discretisation
for constructing variables, and averaging of observations. We will use binning to
discretise the m/z domain and construct variables, and we will replicate each clas-
sification three times, each differing only by a shift in bin locations. In each case we
ultimately use the classification rule resulting from taking the majority result of the
three parallel shifted-bin classifications. When averaging spectra, we include zeroes
for absent peaks. As mentioned in Section 4.2, there are a number of data types that
could be used, and we will compare results using five different data types, binary
and four different non-binary data types (intensity, area, SNR, and log-intensity).
Furthermore, for the non-binary data types we will also consider an alternative av-
eraging scheme in which absent peaks are omitted rather than included as zeros,
and compare results between these averaging schemes.

In Section 4.4 we introduced an approach to normalisation that could reduce
unwanted variability in the non-binary data types, and in Chapter 5 we will consider
results with and without such normalisation. For the binary data type, we will also
consider the spatial smoothing introduced earlier in Section 2.5, to similar effect.

MALDI-MSI data are high-dimensional, and this can pose a challenge for clas-
sification. In Section 4.3 we introduced two approaches to dimension reduction: a
PCA based projection approach, and a CCA-based variable ranking approach. We
will explore the results of applying these approaches in Chapter 5. So, in summary,
in Chapter 5 we will consider each combination of the following options, applied as
described in Figure 4.3:

• Dimension reduction approach (PCA, CCA, or no dimension reduction)
as introduced in Section 4.3,

• Classification method (NB, LDA, or DWD), note: LDA cannot be used if
no dimension reduction is performed, as discussed in Section 4.1,

• Spectra included in patient-averages (all, or only annotated tumour spec-
tra) as discussed in Section 4.2.2,

• Data type (area, binary, intensity, log-intensity, or SNR),

– When non-binary data types are used,

∗ Normalisation (with, or without) as described in Section 4.4, and

∗ Treatment of absent peaks when averaging (include as zeros,
or ignore) as discussed in Section 4.2.2,

– When binary data is used, Spatial smoothing (τ = 0, τ = 0.15, or
τ = 0.25) as described in Section 2.5.
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Figure 4.3: Workflow showing how the various options introduced in this chapter
fit together in a sequence of decisions culminating in classification of the MALDI-
MSI data. We will consider every possible path through this workflow in Chapter 5,
discussing the various options introduced in this chapter and how they perform when
applied to the endometrial cancer TMA data of Section 1.5.3.
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Chapter 5

Classification of Lymph Node
Metastasis in Endometrial Cancer

In Chapter 4 we introduced a variety of classification methods, as well as discussing
preprocessing and variable reduction of MALDI-MSI data prior to classification. In
this chapter we will consider the application of these classification methods to the
TMA data of Section 1.5.3 and in this context we will discuss the effects various
preprocessing decisions have on classification performance. After presenting and
discussing some initial results using each of the data types we will consider (binary,
intensity, log-intensity, SNR, area) in Section 5.1, we consider variations in prepro-
cessing, including dimension reduction approaches, which could potentially improve
the classification performance. In Section 5.2 we apply the dimension reduction
approaches described in Section 4.3. In Section 5.3 we consider variations in other
preprocessing options prior to classification, including:

• Making use of histopathological annotations to restrict spectra that are in-
cluded in patient-averages to only spectra from cancerous tumour tissue, re-
moving spectra from non-tumour tissue.

• For the non-binary data we consider:

– Normalisation using the internal calibrants, as described in Section 4.4,
and

– An alternative method for treating absent peaks when averaging spectra
from each patient.

• For the binary data we consider the spatial smoothing of Section 2.5.

After having considered overall trends in the effects these preprocessing options
have on classification performance, we take a closer look at some of the results that
achieved the best LOO-misclassification in Section 5.4, and discuss how use of the
CCA-based variable ranking approach to dimension reduction has the added benefit
of identifying variables (m/z values) important for the classification — potential
targets for follow up studies. In Section 5.5 we introduce a heuristic that lends some
insight into the stability of linear classification rules, analogous to the concept of
leverage from linear regression.

In Sections 5.1-5.5 we present many results, but generally make only a few sparse
conclusions — the primary goal in these sections is to present the results. Hav-
ing presented the results, we discuss overall trends and conclusions in Section 5.6.
Ultimately our main conclusion is that the most important factor in determining
classification performance is the choice of dimension reduction approach, and that
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CCA-based variable selection performs very well. A couple of other factors, par-
ticularly classification method and data type also seem to have strong effects on
classification performance, but with strong interaction effects that make predicting
which option will perform well in any given situation somewhat difficult. Ultimately,
our recommendation is to try several different variations to see which perform the
best, but in our data CCA-LDA on the log-intensity data seems to perform very
well.

The results presented in Sections 5.1-5.5 use the endometrial data described in
Section 1.5.3 to explore the trends mentioned above, but it is of interest to explore
if these trends generalise to the analysis of MALDI-MSI TMA data, or if they
are specific to the endometrial data. To this end, we reproduced all analyses on
the vulvar data, also introduced in Section 1.5.3, and these results are included in
Appendix D. Some of the lesser trends are contradicted in the vulvar data. However,
the main conclusions are all supported by the vulvar data results: that dimension
reduction plays the biggest role in determining classification performance, that CCA-
based variable selection performs very well, and that CCA-LDA on the log-intensity
data consistently performs very well.

5.1 Data Processing and Initial Results

As discussed in Section 1.5.3, the endometrial cancer data consists of four datasets
total: two sections (technical replicates) of two TMAs were analysed. In this analy-
sis, we consider all four of these datasets together — making no distinction between
them. If there exist batch effects between these datasets, this could be problematic,
but we believe the methodology is sufficiently reproducible that any batch effects
between datasets should be negligible. Furthermore, we are attempting to demon-
strate that MALDI-MSI methodology can be used to predict patients LNM status,
and if the methodology produces large batch effects such prediction would likely
be impossible regardless. As discussed in Section 1.5.3, after consideration of the
patient clinical data it was determined that 43 patients suitable for the study are
represented across the two TMAs. Of these 43 patients, 16 are lymph node metas-
tasis positive, 27 are negative. Details on the endometrial cancer project from which
these data originate are available in Mittal et al. (2016).

As discussed in Section 2.1 we bin peaks with a bin width of 0.25 Da and, as
discussed in Section 4.2.1, all analyses are replicated in parallel using bin locations
shifted by −0.25

3
Da and +0.25

3
Da as in Algorithm A.3 to compensate for the fact

that the binning is data-independent. We discussed the reasons why using multiple
shifted-bin analyses is important in Section 2.6.2, and details are included in Sec-
tion A.5. The bins represent variables in these data. Initially, for each patient, all
spectra were averaged for each m/z bin. These averages are assembled into data ma-
trices with n = 43 columns corresponding to the patients represented in the study,
and d = 4582 rows corresponding to non-empty m/z bins (d = 4570 and d = 4584 in
the two shifted-bin analyses respectively). These matrices are HDLSS (n < d) and
so, as discussed in Section 4.1, LDA cannot be applied. NB and DWD can, however,
and the LOO misclassification (as discussed in Section 4.1.1) of applying these two
classification methods to these data are shown in Figure 5.1 for each of the different
data types mentioned in Section 4.2. As we are performing three shifted-bin analyses
in parallel, each result reported is the result of a majority ‘meta-classification’ rule
combining the three classification results obtained from each of the parallel analyses.

Figure 5.1 shows that DWD strictly outperforms NB in this HDLSS context.
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Figure 5.1: Classification Without Dimension Reduction. LOO misclassifica-
tion (number of observations assigned an incorrect class label by LOO CV) on the
y-axis using DWD or NB vs. data type on the x-axis.

DWD was specifically developed with the shortcomings of classical methods such as
NB in exactly such high-dimensional cases in mind, so the fact that DWD outper-
forms NB here is perhaps unsurprising. The other interesting feature of Figure 5.1
is that the area and intensity data seem to outperform the other data types.

5.2 Dimension Reduction

In Section 4.3 we introduced two methods for dimension reduction: PCA, where
the centred data are projected into the first k principal component directions (max-
imising variance) and CCA variable ranking, where variables in the data are ranked
according to their correlation to the class labels (LNM status in this case) and the
first k ‘most important’ variables are selected. Figure 5.2 shows the application
of these two dimension reduction methods to the endometrial data (representing
results that use PCA and CCA with solid and dashed lines respectively), prior to
classification by the three methods introduced in Section 4.1: LDA, NB, and DWD.
Figure 5.2 identifies results produced using a given data type with a single colour,
and shows results for a range of values for the number of dimensions to reduce too,
k, from 1 to 45. In the PCA dimension reduced data, represented by dashed lines
in Figure 5.2, k is the number of principal components as discussed in Section 4.3.1.
In the CCA variable selected data, represented by solid lines in Figure 5.2, k is the
number of variables selected, as discussed in Section 4.3.2.

Note that LDA results exist for only k ≤ 40, this is not only the maximum k such
that Ŵ is invertible in practice, but in fact the theoretical maximum for performing
LOO CV. In general, Ŵ is singular for n − κ < d, but when using LOO CV n is
replaced with n− 1 as in each case one observation is ‘left-out’ so, for LOO CV, Ŵ
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Figure 5.2: Classification of Dimension Reduced Data. LOO misclassification
as in Figure 5.1 on the y-axis vs. the number of principal components on the x-axis
for the PCA dimension reduced data, or the number of variables retained for the
CCA variable reduced data. The results from using each classification method (NB,
LDA, and DWD) are shown in seperate panels. Within each panel, results from
using each data type are identified by colour. The LOO misclassification refers to
the number of incorrectly classified patients out of 43.
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is singular when d > n − κ − 1 = 43 − 2 − 1 = 40. Similarly note that the PCA
dimension reduced results exist for k ≤ 42, as the PCA dimension reduced data with
k = 42 includes all principal components and 100% of the variance in the original
data is preserved.

DWD shows less variation as k increases in its LOO misclassification compared
with the other two classification methods, having quite stable LOO misclassification
for k ≥ 20. For the PCA dimension reduced data (dashed lines) in particular, the
LOO misclassification stabilises to a single value in several cases, specifically:

• the PCA dimension reduced area data (dashed red line) achieves a stable
minimum LOO misclassification by DWD of 11 for k ≥ 19,

• and similarly the PCA dimension reduced intensity data (dashed green line)
first achieves its minimum LOO misclassification by DWD of 12 at k = 10,
and stabilises for k ≥ 20.

This stable behaviour suggests that it suffices to consider the parsimonious models
with k = 19 and k = 20 respectively in these cases.

In contrast to these stable minima, the PCA dimension reduced binary (yel-
low), log-intensity (blue), and SN (purple) data achieve minimum values of LOO
misclassification by DWD at less than 10 components, specifically:

• the PCA dimension reduced binary data (dashed yellow line) achieves its min-
imum LOO misclassification by DWD of 13 at k = 7, 8,

• the PCA dimension reduced log-intensity data (dashed blue line) achieves its
local minimum LOO misclassification by DWD of 11 at k = 7, and

• the PCA dimension reduced SN data (dashed purple line) achieves its mini-
mum LOO misclassification by DWD of 17 at k = 3, 4, 9, and stabilises at a
higher LOO misclassification of 18 for k ≥ 21.

In contrast to the DWD results, NB and LDA exhibit relatively more instability
as the number of components, k, increases. Of particular note is the minimum LOO
misclassification of 7 achieved by LDA on the PCA dimension reduced data, with
k = 35 for both the binary and log-intensity data (dashed yellow and blue lines
respectively). This LOO misclassification of 7 is the best result achieved using PCA
dimension reduction of all the results shown in Figure 5.2.

The broad trend for CCA variable reduced results is for the LOO misclassification
to improve as k is increased until around k = 10, at which point a somewhat
unstable minimum is achieved. Overall, CCA variable selection seems to outperform
PCA dimension reduction, although in some cases this is not entirely clear. CCA
outperforming PCA can be clearly observed in the LDA results of Figure 5.2, where
the CCA results almost strictly outperform the PCA results. CCA variable selection
also achieves minimum LOO misclassifications less than 7, achieving a minimum
LOO misclassification of 6 using LDA with the area and SN data, and a minimum
LOO misclassification of 4 using NB with the binary data.

Figure 5.2 contains an enormous amount of information and we are often only
interested in the ‘optimal result’ that is the lowest LOO misclassification. From
here on, we will display dimension-reduced results only for the optimal choice for
the number of dimensions, k, in each case — the k that achieves the best LOO
misclassification. In cases when there are multiple k that achieve equal best LOO
misclassification, we choose the smallest — the most parsimonious. This will allow us
to visualise the results we are interested in, while not overly crowding figures. Using
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these ‘optimal results’ will be useful in visualising the effect of various preprocessing
options we will consider.

5.3 Varying Preprocessing Parameters

In this section, we will consider results achieved using alternative preprocessing
alternatives, prior to dimension reduction and classification. First we will consider
restricting to just spectra annotated as cancer when averaging spectra for each
patient, as this is a preprocessing option for all the data types we consider. Next
we consider some additional preprocessing options which are specific to either the
binary, or non-binary data. For the binary data we consider spatial smoothing as
described in Section 2.5. For the non-binary data types we consider normalisation, as
described in Section 4.4, and alternative treatment of missing values when averaging.

5.3.1 Cancer Annotation

The first preprocessing option we consider, which applies in all data types, is whether
to restrict attention to the spectra from regions of tissue annotated as tumour by the
pathologist, or to include all spectra when averaging spectra from each patient. All
results shown in Figures 5.1 and 5.2 include all spectra when averaging, regardless of
annotation. To recap, Figure 5.1 shows 10 results without any dimension reduction
corresponding to five different data types classified using NB and DWD. Figure 5.2
shows 30 cases corresponding to every combination of data type, dimension reduc-
tion approach (PCA or CCA) and classification method (LDA, NB, or DWD). As
discussed at the end of Section 5.2, each of these 30 cases has an optimal choice for
the number of dimensions k. The 10 cases with no dimension reduction combined
with the 30 optimal cases corresponding to the cases represented in Figure 5.2 con-
stitute the 40 points connected with solid lines in Figure 5.3. For each of these 40
cases, Figure 5.3 also shows the results when restricting to only annotated tumour
spectra, and these alternative results are identified by being connected by dashed
lines.

From Figure 5.3 we can see that when using CCA variable selection, restricting to
only spectra from annotated tumour tissue seems to improve results — the notable
exception to this being when NB is used on either the binary and log-intensity data
(yellow and blue lines). When no dimension reduction step is included restricting
to only annotated tumour spectra seems to have no noticeable trend in its effect,
but when PCA dimension reduction is used restricting to only annotated tumour
spectra seems to worsen results — the exceptions being the intensity and area data
(green and red lines).

Another notable trend in Figure 5.3 is that LDA seems to perform better than NB
or DWD on the CCA variable reduced data, with the the same two exceptions noted
above — NB performs better on both the binary and log-intensity data, including
all spectra (solid yellow and blue lines). Koch (2013, Section 13.3.3) contains a
discussion of some intuition that may be of interest with regards to the link between
LDA and CCA. It is also interesting that this trend of LDA performing better than
NB and DWD does not apply to the PCA dimension reduced data however, with
the same exceptions — the binary and log-intensity data including all spectra (solid
yellow and blue lines).

Overall there seems to be no conclusive trend in the effect restricting to cancer
annotated spectra only has on classification performance. However, although not
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Figure 5.3: Classification With/ Without Restricting to only Cancer An-
notated Spectra. LOO misclassification as in Figure 5.1 on the y-axis vs. the
combination of classification and dimension reduction method used on the x-axis.
The results from using all spectra and using only annotated tumour spectra are iden-
tified by use of solid and dashed lines respectively. The results from using each data
type are identified by a single colour. In cases that include a dimension reduction
step (PCA or CCA), results are only shown for the optimal choice for the number
of dimensions, k, that is the k that achieves the lowest LOO misclassification. In
cases when there are multiple k that achieve equal lowest LOO misclassification, we
choose the smallest of these k.
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showing an overall effect this variation does show interesting interactions with choice
of dimension reduction approach, classification method, and data type. Dimension
reduction approach, classification method, and data type seem to be the most influ-
ential factors on overall classification performance, and so it may be worthwhile to
investigate these interactions further by designing new experiments with this goal
specifically in mind. As it is, however, these data are inconclusive as to the effects
restricting to cancer annotated spectra have on classification.

5.3.2 Binary Data

For the binary data, we consider the spatial smooth discussed in Section 2.5 prior to
dimension reduction and classification. Figure 5.4 shows the results on the smoothed
binary data, and of particular note Figure 5.4 shows that when we restrict to only
cancer annotated spectra and apply either level of smoothing (0.15 or 0.25), CCA-
LDA achieved the best LOO misclassification, one, that we have seen so far. Overall,
smoothing seems to improve performance when combined with CCA-based variable
selection, but does not show any such clear trend of improvement when used on the
data with no dimension reduction or the PCA dimension reduced data.

5.3.3 Non-Binary Data

For the non-binary data types, we apply the normalisation as described in Section 4.4
in an attempt to reduce the unwanted variability in the non-binary measures of
peak presence. The effect of normalisation on these results is shown in Figure 5.5.
Figure 5.5 shows that normalisation does seem to have a clear overall effect on the
LOO misclassification. However, one case of interest is when the normalised log-
intensity data are used with CCA-LDA, including all spectra. This case achieves
the equal best LOO misclassification of one observed so far. The other two results
that achieved a LOO misclassification of one corresponded to the use of the binary
data with smoothing, mentioned in the previous section.

The second preprocessing option specific to the non-binary data that we will
consider relates to the averaging step — in which spectra from each patient are
averaged on a per m/z bin basis. For non-binary data types we need to make
a decision about how we treat missing peaks. So far, we have included zeroes
for missing peaks when averaging spectra, but alternatively we could restrict the
averaging to only spectra that have peaks. We now compare these two ways of
taking averages/ treating missing peaks. Figure 5.5 shows 128 cases corresponding
to every combination of non-binary data type, dimension reduction approach (CCA,
no dimension reduction, or PCA), classification method (DWD, LDA, and NB),
spectra restriction (all spectra or only annotated cancer spectra), and normalisation
(with or without). We include zeroes for absent peaks when averaging in all 128 of
the cases shown in Figure 5.5. Figure 5.6 shows these same 128 cases, but without
including zeros for absent peaks when averaging. Figure 5.6 shows a similar lack of
overall trend with respect to the effect of normalisation as in Figure 5.5.

Ignoring absent peaks when averaging (comparing Figure 5.5 and Figure 5.6) also
does not seem to have an overall effect on classification performance, although it does
seem to dramatically effect the classification in some specific cases. In particular,
ignoring absent peaks when averaging the CCA variable selected log-intensity data
produces remarkably low misclassifications. Specifically,

• in five of these cases a LOO misclassification of zero is achieved,
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Figure 5.4: Classification of Binary Data With/ Without Spatial Smooth-
ing. LOO misclassification as in Figure 5.1 on the y-axis vs. the combination of
classification and dimension reduction method selected on the x-axis. The results
from using all spectra and using only annotated tumour spectra are identified by
use of solid and dashed lines respectively. The results from using no smoothing
(τ = 0), weak smoothing (τ = 0.15), or medium smoothing (τ = 0.25) are identified
with colours. The smoothing is described in Section 2.5. In cases that include a
dimension reduction step (PCA or CCA), results are only shown for the optimal
choice for the number of dimensions, k, that is the k that achieves the lowest LOO
misclassification. In cases when there are multiple k that achieve equal lowest LOO
misclassification, we choose the smallest of these k.
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Figure 5.5: Classification of Non-Binary Data With/ Without Normalisa-
tion — Part 1: Including Zeroes for Missing Values. LOO misclassification
as in Figure 5.1 on the y-axis vs. the combination of classification and dimension
reduction method selected on the x-axis. The results from using each data type are
shown in seperate panels. The results from using all spectra and using only anno-
tated tumour spectra are identified by two colours respectively accross panels. The
results from not using/ using normalisation are identified by use of solid and dashed
lines respectively. All results shown include zeros for absent peaks when averaging.
In cases that include a dimension reduction step (PCA or CCA), results are only
shown for the optimal choice for the number of dimensions, k, that is the k that
achieves the lowest LOO misclassification. In cases when there are multiple k that
achieve equal lowest LOO misclassification, we choose the smallest of these k.
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Figure 5.6: Classification of Non-Binary Data With/ Without Normalisa-
tion — Part 2: Not Including Missing Values. LOO misclassification as in
Figure 5.1 on the y-axis vs. the combination of classification and dimension reduc-
tion method selected on the x-axis. The results from using each data type are shown
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In cases that include a dimension reduction step (PCA or CCA), results are only
shown for the optimal choice for the number of dimensions, k, that is the k that
achieves the lowest LOO misclassification. In cases when there are multiple k that
achieve equal lowest LOO misclassification, we choose the smallest of these k.
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– four of which correspond to the use of NB or DWD with or without re-
stricting to annotated tumour tissue spectra, and without normalisation,

– the fifth corresponds to the use of NB on the normalised data without
restricting to annotated tissue.

• LDA achieves a LOO misclassification of one on these data without normali-
sation and restricting to only annotated spectra.

The fact that ignoring absent peaks when averaging produces so many extremely low
LOO misclassification results warrants some further investigation. In Section 5.4 we
consider the cases which achieved the best classification performance in more detail,
including the six cases mentioned in the dot points above as well as the three other
cases mentioned earlier. The preprocessing options used to achieve these nine cases
are listed in Table 5.1.

5.4 The Lowest Misclassification Results

In Section 5.3 we presented a total of 304 classification results, represented across
Figures 5.3-5.6, with some of these results being repeated from Figure 5.1 and Fig-
ure 5.2 respectively. These 304 cases result from every possible combination of the
following options:

• Dimension reduction approach (PCA, CCA, or no dimension reduction),

• Classification method (NB, LDA, or DWD), Note: LDA cannot be used if
no dimension reduction is performed, as discussed in Section 4.1.

• Spectra included in patient-averages (all, or only annotated tumour spec-
tra),

• Data type (area, binary, intensity, log-intensity, or SNR),

– When non-binary data types are used,

∗ Normalisation (with, or without) as described in Section 4.4, and

∗ Treatment of absent peaks when averaging (include as zeros,
or ignore),

– When binary data is used, Spatial smoothing (τ = 0, τ = 0.15, or
τ = 0.25) as described in Section 2.5,

Of these 304 results, 9 achieve a LOO misclassification of zero or one, and these
are shown in Table 5.1. Each of these results was noted in the discussion of Sec-
tion 5.3. The only option that is the same across all 9 of these best results is
that CCA-based variable selection was used. The results corresponding to using
all the same options except with alternative dimension reduction approaches are
also included in Table 5.1 for comparison. Such a comparison reveals the dramatic
improvement achieved by CCA-based variable selection compared to either PCA
dimension reduction or no dimension reduction in these cases. None of the 9 cases
shown in Table 5.1 achieve a LOO misclassification below 20 when no dimension
reduction is done prior to classification — out of a total of 43 patients, this is not
much better than coin tossing. PCA dimension reduction performs slightly better
than no dimension reduction — achieving LOO misclassifications as low as 9 and
10. As previously mentioned, all these cases achieve LOO misclassifications of zero
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Table 5.1: Classification results that achieve a LOO misclassification of zero or one.
All results shown achieved said LOO misclassification using CCA-based variable
selection, but we include the corresponding results when PCA and no dimension
reduction are used for comparison. In the cases when dimension reduction is used,
the number of dimensions reduced too, k, is also included. The ‘ID’ column is
used to identify these results with those shown in Figure 5.7. Abbreviations follow.
Norm: Normalisation. Annot: Annotated. log(I): log-intensity. W/o: Without.

Data Absent PCA PCA CCA CCA
Method Spectra Type τ Norm Peaks LOO LOO k LOO k ID

DWD All log(I) W/o Ignore 21 18 5 0 23 1
DWD Annot log(I) W/o Ignore 21 18 35 0 14 2
LDA Annot Binary 0.15 13 36 1 31 3
LDA Annot Binary 0.25 10 37 1 23 4
LDA Annot log(I) W/o Ignore 15 33 1 26 5
LDA All log(I) With Include 9 39 1 24 6

NB All log(I) W/o Ignore 21 15 30 0 42 7
NB Annot log(I) W/o Ignore 22 16 20 0 19 8
NB All log(I) With Ignore 23 15 37 0 31 9

or one using CCA-based variable selection. As discussed in Section 5.2, it is perhaps
not entirely surprising that CCA-based variable selection outperforms these other
approaches, as it is the only ‘supervised’ approach to dimension reduction we have
considered — i.e. it takes into account information about the class labels — but the
degree to which it outperforms these other approaches is still surprising. Surprise
aside, this supports the conclusion we made in Winderbaum et al. (2016) — that
one of the most important factors in determining classification performance is the
approach taken to dimension reduction.

In cases where dimension reduction is used the number of dimensions to reduce
too, k, needs to be chosen and, as discussed in Section 5.2, we consider only the
‘optimal’ k — the smallest k which minimises the LOO misclassification, included
in Table 5.1. This simplification allows for us to represent the results from more
permutations and variations in a single plot, and has been useful in Section 5.3.
However now that we are interested in a relatively smaller number of cases we can
consider these cases in more detail by varying k. Figure 5.7 shows the LOO mis-
classification as the number of CCA ranked variables selected k is varied, similarly
to Figure 5.2, for the 9 best sets of options as listed in Table 5.1. Figure 5.7 shows
the interesting pattern that the DWD and NB LOO misclassification tend to reduce
and stabilise at a minimum value as k increases, but the LDA LOO misclassifica-
tion seems to achieve a local minima somewhere in the range 20 < k < 30, rising
again for k > 30 — note that there is one possible exception to this trend (ID =
3). In a traditional low-dimensional setting, it is typical to expect adding variables
to improve classification. However in HDLSS data such as this, it is not unusual
to observe that once a certain number of dimensions is reached, here around the
20− 30 range, additional variables can begin to behave as noise and worsen results.
This change in behaviour allows for ‘optimal’ choices to be made for the number of
dimensions to reduce too.

Another advantage of the CCA variable selection approach is that it selects from
existing variables, thus preserving their interpretation as m/z bins. Thus, we can
look into the rankings that produced these best results, and find which m/z values
are highly ranked, as these could be potential targets for follow up validation studies.
As choice of classification method does not influence the variable ranking, there are
6 unique sets of preprocessing options represented amongst the 9 results of Table 5.1.
Each of these 6 sets of preprocessing options will produce different rankings, and
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Figure 5.7: LOO misclassification as in Figure 5.1 on the y-axis vs the number of
variables, k, on the x-axis where k is the number of variables retained in the CCA-
based variable selection step. Results using each of the combinations of preprocessing
options listed in Table 5.1 are shown. Each of these combinations of preprocessing
options are identified by ID and colour, and separated into panels by classification
method.
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each of these will have three rankings produced from the three shifted-bin analyses
as discussed in Section 4.2. Parallel LC-MS analyses were conducted on tissue
from the endometrial TMAs for protein identifications, so that these identifications
could then be matched to these highly ranked m/z bins in order to infer proteins
that could be important to the classification of LNM status. Several proteins of
interest were identified through this matching, and follow up validation studies are
currently being undertaken to further investigate the link between these proteins and
LNM in endometrial cancer. As an example, one of the most consistently recurring
m/z values is that centred around m/z = 1198.701, which is ranked in the top 20
variables for 6 of the 18 rankings. The most likely parent protein identified from
the LC-MS for this peptide m/z is an Actin, most likely aortic smooth muscle Actin
(UniProtKB entry name: ACTA HUMAN). Two other masses likely to be Actin peptides
are also highly ranked in several of the rankings, specifically those centred around
m/z = 1161.565 and m/z = 1501.749. Table 5.2 shows all potential matches from
the LC-MS identifications to these three m/z values, notice that Actin is not the
only possible parent protein — there are other possibilities, and these are also being
pursued in follow-up work.

Table 5.2: LC matching to Actin peptides

MALDI UniProtKB Peptide MASCOT error error
m/z Entry Name Sequence expect (m/z ) (ppm)

1198.70 ACTC HUMAN AVFPSIVGRPR 0.00 -0.01 -4.25
H14 HUMAN ASGPPVSELITK 0.00 0.03 27.21

ACTA HUMAN AVFPSIVGRPR 0.00 -0.01 -4.25
ACTB HUMAN AVFPSIVGRPR 0.00 -0.01 -4.25

H12 HUMAN ASGPPVSELITK 0.00 0.03 27.21
ACTS HUMAN AVFPSIVGRPR 0.00 -0.01 -4.25
RO60 HUMAN LGLENAEALIR 0.00 0.02 17.86

1161.56 CUL5 HUMAN TLWSLVAFPK 0.00 -0.10 -88.15
ACTS HUMAN EITALAPSTMK 0.00 -0.05 -46.57
RET4 HUMAN FSGTWYAMAK 0.01 0.02 21.09
ACTA HUMAN EITALAPSTMK 0.00 -0.05 -46.57
ACTB HUMAN EITALAPSTMK 0.00 -0.05 -46.57
ACTC HUMAN EITALAPSTMK 0.00 -0.05 -46.57

1501.75 FIBA HUMAN MELERPGGNEITR 0.00 0.01 4.17
SPTN1 HUMAN EANELQQWINEK 0.00 0.02 13.90
IF4A1 HUMAN GFKDQIYDIFQK 0.00 -0.02 -13.07
ACTA HUMAN IWHHSFYNELR 0.00 0.02 10.30

MYO1C HUMAN MSLLQLVEILQSK 0.02 -0.12 -77.79
FA49B HUMAN MSLFYAEATPMLK 0.00 0.01 4.04

5.5 Measuring Stability/ Overfitting/ Leverage

So far in this chapter, and in particular in Section 5.3, we have considered the results
of classification using a considerable array of different options. We discuss the cases
that resulted in the best LOO misclassification in Section 5.4. Due to the nature
of our approach — applying many different combinations of processing options —
it can be difficult to judge if these best results are due to accurate prediction,
or random chance combined with a sufficiently large number of permutations of
processing options.
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Figure 5.8: Frequency histograms of stability heuristic values from the 9 CCA vari-
able selection cases shown in Table 5.1. Each histogram is presented in a seperate
panel labeled 1-9 corresponding to the ID column of Table 5.1. Each histogram
consists of 129 stability heuristic values — one for each of the 43 patients for each
of the three shifted-bin analyses.
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I introduce a heuristic measure of classification rule stability in Equation 5.1,
comparable to the ideas of leverage from regression (Everitt and Skrondal, 2002).
Leverage measures the effect that removal of a single observation has on the pa-
rameter estimates in regression. Analogously the heuristic we introduce below is a
measure of the effect that removing a single observation has on the direction vector d
as in the formulation of Equation 4.1 for a linear classification rule trained from the
data. This idea also naturally follows from the ideas of LOO CV, where the analysis
is repeated with each observation removed. If we let d be the direction vector of the
classification rule trained from all the data, and let di be the direction vector of the
classification rule trained from the data with the ith observation removed, then the
heuristic we will consider is the internal angle between the two vectors,

arccos

(
d · di
|d||di|

)
= arccos (d · di) as typically |d| = |di| = 1, (5.1)

which is directly related to the cosine distance of Definition 2. The value of the
heuristic defined in Equation 5.1 can be interpreted as an angle, indicating the
change in direction of the trained classification rule when the ith observation is
removed. An angle of zero indicates there is no difference between the original
direction vector and the direction vector trained on the data with the ith observation
removed. Larger values of this heuristic indicate larger changes in the direction
vector — larger angles between the two direction vectors.

Although the heuristic of Equation 5.1 does not entirely address the difficulty
mentioned above in judging if results are due to accurate prediction or random
chance, it can nonetheless provide some insight into the stability or sensitivity of
these classification methods to small changes in the data — specifically, to the re-
moval of individual observations. Figure 5.8 shows a histogram of these heuristic
values calculated for the 9 cases of Table 5.1. Each of the 9 results of Table 5.1 actu-
ally consist of three shifted-bin analyses, and so each of the 9 histograms represents
129 heuristic values, one for each of the 43 patients for each of the three shifted-bin
analyses.

It can be seen from Figure 5.8 that all these cases have strongly right-skewed
distributions with the majority of values falling very close to zero. This is good as it
indicates that overall in the majority of these cases, the direction vector is not very
sensitive to the removal of individual observations from the training dataset. Some
notes on Figure 5.8:

• Three distinct distributions can be observed corresponding to the three clas-
sification methods: DWD (ID = 1-2), LDA (ID = 3-6), and NB (ID = 7-9).

• The distributions for the LDA cases have significantly thicker tails than the
other cases — seeming to demonstrate the most overall instability of the three
methods. LDA is also the only method of the three to show heuristic values
above π

8
radians (22.5 degrees), although only for a very small number of

values.

• The distributions of the DWD and NB cases show similar thickness tails, but
different modes. The DWD cases tend to have modes below π

64
radians, while

the NB cases have modes above π
64

radians and in fact do not have any heuristic
values below π

128
radians at all.

It is interesting to speculate on the possible link between these stability heuristic
results, and the results shown in Figure 5.2, in which it was noted that DWD showed
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less variance in LOO misclassification as the number of dimensions k was varied.
Furthermore, there may be reason so consider classification methods other than LDA
— despite the fact that LDA tends to achieve the best LOO misclassification results
— as LDA is also the most sensitive to small changes in the data according to this
heuristic, which is an undesirable property in a classification rule.

5.6 Conclusions

As summarised at the beginning of Section 5.4, we have presented results repre-
senting a considerable array of different options for classification in Section 5.3. For
convenience we repeat the options which we have considered:

• Dimension reduction approach (PCA, CCA, or no dimension reduction),

• Classification method (NB, LDA, or DWD), Note: LDA cannot be used if
no dimension reduction is performed, as discussed in Section 4.1.

• Spectra included in patient-averages (all, or only annotated tumour spec-
tra),

• Data type (area, binary, intensity, log-intensity, or SNR),

– When non-binary data types are used,

∗ Normalisation (with, or without) as described in Section 4.4, and

∗ Treatment of absent peaks when averaging (include as zeros,
or ignore),

– When binary data are used, Spatial smoothing (τ = 0, τ = 0.15, or
τ = 0.25) as described in Section 2.5,

Amongst these results, there are some general trends and suggestions that can
be made based on these trends. Ideally we would like to be able to make recom-
mendations on approaches, methods, and preprocessing options that tend to be
more effective when classifying MALDI-MSI TMA data. However, of the results
discussed in this chapter, no single set of decisions seems to demonstrate superior
results over all other options. The best strategy may be to try several options and use
whichever performs best in any given circumstance. That said, some decisions had a
more pronounced effect on classification performance than others. Summarising and
discussing these effects is the focus of this section. Overall, the factor that seems to
have the biggest effect on classification performance is the Dimension reduction
approach taken, with CCA variable ranking performing very well. Classification
method and Data type also seemed to have significant effects on classification
performance, and in particular seemed to have strong interaction effects with each
other and choice of Dimension reduction approach. The remaining preprocess-
ing variants we considered did not seem to have a consistent effect on classification
performance. These options are: Spectra included in patient-averages (all or
only annotated tumour spectra), Spatial Smoothing of the binary data, Nor-
malisation and Treatment of absent peaks when averaging in the non-binary
data.

Furthermore, it is also of interest if these trends extend to classification of
MALDI-MSI TMA data in general, or if they are artefacts of the endometrial data
we have considered here. In order to investigate this possibility we have replicated
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all the analyses in this chapter using a different dataset — relating to vulvar can-
cer, as mentioned briefly at the end of Section 1.5.3. The results of classification
on the vulvar data are included as Appendix D, in which Figures D.1-D.6 mirror
Figures 5.1-5.6 in a one-to-one fashion but for the vulvar data.

Dimension Reduction Approach

First and foremost, the clearest trend and strongest conclusion from these results
is that the CCA-based variable ranking performs very well. The importance of di-
mension reduction, and the superiority of the CCA-based variable ranking approach
are also very clear in the vulvar data analyses of Appendix D. Furthermore, the
CCA-based variable ranking method has the additional (very significant) advantage
of interpretability — selected variables correspond directly to analytes of biological
interest, as discussed in Section 5.4.

Classification Method

Overall, CCA-LDA seemed to achieve the best results in most circumstances, with a
few exceptions noted in Table 5.1. However based on our heuristic stability analysis
of Section 5.5, LDA showed the worst stability. This instability of the LDA method
could contribute to higher variance in LOO misclassification, and this could poten-
tially explain the better results achieved with LOO. The results discussed are largely
those chosen from a range of possible dimension-reductions, with the dimension-
reduction chosen such that the minimum LOO misclassification is achieved. If the
LDA method is more sensitive to small changes in the data, as the results of the
heuristic stability analysis in Section 5.5 suggest, this could mean the results would
vary more as the number of dimensions used is varied. Higher variance in the LOO
misclassification combined with the ‘optimality selection’ of choosing the dimension
that minimises the LOO misclassification could be biasing the results to show LDA
performing better. This raises questions of how to appropriately measure the per-
formance of classification methods in such cases, but does not conclusively answer
any such questions. DWD demonstrated the best stability in the heuristic analysis
of Section 5.5, and this may indicate that more consistent results could be achieved
with DWD. It is difficult to say with any certainty either way, and so although
choice of classification method is clearly very important, it is nonetheless difficult
to recommend a single classification method as being superior to all others. In-
stead we recommend using several options and selecting that which performs best
or combining the results of a number of good options in a sensible way.

Data Type

Overall, the log-intensity data achieved very good LOO misclassification results,
with the binary data also achieving some notable local optimums, as noted in Ta-
ble 5.1. This is also true of the vulvar data results in Appendix D. As such we
suggest that the log-intensity data serves as a good starting point for classification
of these data, but exploration of alternative data types, including the binary data,
may also yield improvement and should be pursued if optimising results is of interest.

The distribution of intensity values in a typical MALDI-glsims dataset well ap-
proximates an exponential distribution, which could contribute to why the log-
intensity values achieve good results using these linear classification methods. It
should be noted that other non-binary data types, such as SNR, also follow a sim-
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ilar exponential decay distribution of values typically, and so considering their log-
transformed analogues may also be of interest.

Cancer Annotation

In principle, restricting to a single tissue type should reduce the within-patient
variability and thereby facilitate more accurate prediction. However, the results do
not support this hypothesis — showing no consistent effect to this restriction. This
same lack of consistent trend is apparent in the vulvar cancer results of Appendix D.
There are several possible, not mutually exclusive, explanations that could account
for this, including:

• Restricting to annotated spectra reduces the total amount of spectra used
in the analyses, and this could lead to more noisy patient-averages as each
average is obtained from a smaller number of observations (spectra). It is
possible that restricting to annotated spectra does reduce the variability in
the data by restricting to a single tissue type, but that reducing the total
number of spectra also increases the variability of the averages, and these
two competing effects cancel each other out, resulting in no net effect on the
classification performance.

• There may exist characteristics of the surrounding non-tumour stroma tissue
that are important in the prediction of LNM, and that this information is lost
when restricting to only tumour tissue. Similarly this could compete with the
effect of reducing the variability due to multiple tissue types being considered,
and result in no net change being observable. There is some evidence to
support this hypothesis, specifically Oppenheimer et al. (2010) demonstrated
that tissue adjacent to a tumour, histologically classified as non-tumour, can
share molecular characteristics with the tumour tissue. Oppenheimer et al.
(2010) suggested that this phenomena could be involved in tumour recurrence
post resection, but the same phenomena could also be involved in explaining
why restricting to histologically annotated tumour regions does not produce a
consistent improvement in classification performance.

These points, particularly the second dot point above, warrant further investigation
in future research.

Smoothing

In most of the cases considered for the binary data, and particularly those cases
that achieved the best results, it seems that spatial smoothing has a good net effect
on LOO misclassification. This is unsurprising, as the smoothing should reduce
the noise, and thus allow signals to be more easily detected. For future research,
pursuing spatial smoothing techniques for the non-binary data, such as simple kernel
density smoothing, could be of interest.

Normalisation

It makes intuitive sense that normalisation should reduce the variability in the data,
facilitating more accurate classification. However, the results do not support this
— LOO misclassification shows no obvious trend related to the use of normalisation
prior to classification. In fact, overall, classification performance tends to be worse
when normalisation is used. This worsening of the classification performance when
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normalisation is used can, for example, be seen in the results using area and inten-
sity data in Figures 5.5 and 5.6. Despite this overall trend however, some of the
results achieving the overall best LOO misclassification shown in Table 5.1 include
use of normalisation. One possible explanation for this seeming contradiction is that
using normalisation could introduce additional degrees of freedom in preprocessing
decisions, and this could allow for the ‘optimality selection’ bias effect to find better
minima. We discussed this optimality bias effect previously, in relation to classifi-
cation methods and the heuristic stability measure. Further investigation could be
of use in elucidating explanations for this behaviour, but ultimately our results are
inconclusive on the effect of normalisation.

Absent Peaks

Similarly to normalisation, the overall trend seems to be that ignoring absent peaks
when averaging worsens LOO misclassification more often that not, but the minority
of results contradicting this trend achieve some of the overall best LOO misclassifica-
tion results (shown in Table 5.1). However, this trend is not replicated in the vulvar
cancer results shown in Appendix D. In the vulvar cancer results of Appendix D,
ignoring absent peaks has no obvious net effect on classification performance, sug-
gesting that the minor downward trend in the endometrial cancer results may simply
be an artefact of these data. Another possible explanation for this downward trend
is that considering multiple options for how to treat absent peaks when averaging
introduces an additional degree of freedom in the preprocessing decisions consid-
ered, and thereby contributes to the ‘optimality bias’ as discussed above in regards
to normalisation. Similarly to the normalisation, these hypotheses warrant further
investigation, but ultimately our results are inconclusive on the effect of ignoring
absent peaks when averaging.
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Concluding Remarks

MALDI-MSI has two aspects that we have focussed on: preserving spatial informa-
tion, and facilitating the classification of clinically relevant diagnostic and prognostic
factors through the use of TMAs.

In Chapters 2 and 3 we explored the spatial aspect of MALDI-MSI data. In
Chapter 2 we demonstrated that cancerous tumour tissue could be seperated from
its surrounding non-tumour tissues by using an automated clustering approach and
that this seperation could be used to implement a DIPPS-feature selection scheme
for selecting a short-list of peptides that are more highly expressed in tumour tis-
sue than non-tumour tissue. In Section 3.1 we explored the use of these short-lists
in gaining information about the within-patient and between-patient variability in
MALDI-MSI data, conluding that although this variability was significant, consid-
ering technical replicates can allow for differences between patients to be detected.
In Section 3.2 we demonstrated that our DIPPS-feature selection approach can be
applied in another way — to find glycan signals (Gustafsson et al., 2015). We
published this DIPPS-feature selection approach as Winderbaum et al. (2015).

In Chapters 4 and 5 we considered the classification of MALDI-MSI TMA data.
In Chapter 4 we introduced and disucssed methods for the classification of such
MALDI-MSI TMA data, while in Chapter 5 we applied these methods to classify
LNM in the endometrial data of Mittal et al. (2016) — comparing the classification
performance of various options for pre-processing, dimension-reduction, and clas-
sification. We concluded that the option with the largest impact on classification
performance was the approach taken to dimension reduction — with CCA-based
variable selection performing very well. Some options also seemed to have very
strong interaction effects with each other — resulting in particular combinations of
choices having much improved classification performance despite each of the individ-
ual options not having big effects in general. Overall, CCA-LDA on the log-intensity
data consistently performed best. In addition we also replicated our analysis on a
second datasetrelating to vulvar cancer, as in Appendix D. Many of the minor results
from the endometrial data were not reproduced in the vulvar data. However the
most obvious trends, including the consistently good classification performance of
CCA-LDA on the log-intensity data, were reproduced in the vulvar data, strength-
ening these results. We published our CCA-based variable selection approach with
these results as Winderbaum et al. (2016).

In addition to developing a framework for feature selection and classification
of MALDI-MSI data, this thesis contains new mathematical and statistical results,
namely:

• The spatial smooth of Section 2.5, which applies not only to proteomics data
analysis, but to binary data in general.

• The analytic form for the matrix inverse derived in Appendix C, which is of
interest not only in linear regression, but is in fact a result for a more general
family of matrices.
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Appendix A

Binning

Here we introduce details on the binning algorithm used, including notation and
definitions. After introducing binning (Section A.1) and some directly related con-
cepts (Section A.2 and Section A.3), I go on to discuss the binary / summed binary
data equivalence (Section A.4) which is related to choice of bin size, and important
when considering non-binary (such as intensity) data. Considering binning using
alternative bin locations will also be relevant, as choice of bin location is arbitrary,
and the discussion of (Section A.5) provides a framework within which sensitivity
of results to bin location can be explored.

A.1 Binning Algorithm for Peaklist Data

The binning method considered here could be used on any functional data where
‘features’ have been identified. To avoid ambiguity I define binning here explicitly
in the context of peaklist data, but all the concepts involved are completely general.
As mentioned in Section 1.5, data we consider will be in the pre-processed ‘peaklist’
format — meaning the data can be represented as a list of peaks, each with an
associated m/z value and parent spectrum as well as other properties. If we denote
the m/z value of the ith peak associated to the jth spectrum mij, then we introduce
notation in Equation A.1 for the maximum and minimum m/z values in a dataset,
i.e.

mmin = min
i, j
{mij} and mmax = max

i, j
{mij} . (A.1)

In Equation A.2 we introduce notation for nfirst - the number of adjacent (non-
overlapping) bins of size b that lie between 0 and mmin, and nlast - the number of
adjacent (non-overlapping) bins of size b needed to cover both 0 and mmax, specifi-
cally

nfirst =
⌊mmin

b

⌋
and nlast =

⌈mmax

b

⌉
. (A.2)

The notation introduced in Equation A.1 and Equation A.2 is sufficient to define
Algorithm A.1, which explicitly defines the process of producing binned data and is
illustrated in Figure A.1.

Algorithm A.1. Binning: Given a bin size b > 0 and a dataset consisting of
n spectra in peaklist format, using the notation introduced in Equation A.1 and
Equation A.2,

1. Construct nlast−nfirst +1 intervals (bins) with left endpoints open, right closed
of width b and with centres

nfirstb, (nfirst + 1)b, (nfirst + 2)b, . . . , nlastb.
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2. Use the bins from the previous step to produce a (nlast − nfirst + 1) × 1 vector
x•j for each spectrum j = 1, 2, . . . , n where the x•j are one of either

• Binary Data: The x•j are such that for each j, the ith entry of x•j is
zero if spectrum j has no peaks in the the ith bin, or one if spectrum j
has at least one peak in the the ith bin.

• Summed Binary Data: The x•j are such that for each j, the ith entry
of x•j is k if spectrum j has exactly k peaks in the the ith bin.

3. Construct a d× n data matrix X (where d = nlast − nfirst + 1) whose columns
are the x•j.

Spectrum

/ Peak List

m/z

Bins

Bin Size b b

Binary Data [ . . . 1 , 1 , 0 , 1 , 1 . . . ]

Summed Binary Data [ . . . 1 , 3 , 0 , 2 , 1 . . . ]

Figure A.1: Schematic illustrating the binning process (Algorithm A.1). Bins are
used to partition the continuous m/z range, and peaks are identified by the bin
within which they occur. Moving from the top of the figure down, peaklist data
can then be converted into either binary, or summed binary data by constructing a
vector whose entries are respectively either; indicators for, or counts of, the number
of peaks in the corresponding bin. In Algorithm A.1 a vector is constructed for each
spectra, and these are concatenated into a data matrix as columns.

When I write “a d × n binary (binned) data matrix X” or “a d × n summed
binary (binned) data matrix X” I refer to a data matrix X of either binary, or
summed binary data respectively - as produced by Algorithm A.1 above. These
binned data are used in the analysis of both the ovarian and endometrial cancer
datasets described in Section 1.5.1 and Section 1.5.3 respectively.

A.2 Invariance Under Removal of Empty Bins

I will refer to bins that contain no peaks in any spectra as empty bins. Algorithm A.1
can (particularly for small bin sizes) produce empty bins. In a data matrix X
produced by Algorithm A.1, each column corresponds to a spectrum, and each row
corresponds to a bin. For reasons of computational speed it is often desirable to
remove the rows of a data matrix X corresponding to empty bins, but we need to
know what effect this will have on analyses.

In many cases removing empty bins has no effect on the results of further anal-
yses. In this section I briefly discuss under which conditions removing empty bins
will have no effect on further analyses, and some common examples of distances that
are invariant under removal of empty bins.
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Consider a d × n data matrix X whose jth column is denoted x•j. Let dempty
be the number of empty rows of X — rows corresponding to empty bins across all
spectra. We construct a new data matrix, X∗ by removing the empty rows of X and
let x∗•j denote the jth column of X∗.

Definition 17. Invariance under the removal of empty variables: We call a
distance D invariant to the removal of empty variables if

D(x•j,x•k) = D(x∗•j,x
∗
•k) ∀ j, k = 1, 2, . . . , n ∀n, d and ∀ 0 ≤ dempty ≤ d

Definition 17 holds for some pseudometrics, and not others. The Euclidean,
cosine, and Hamming distances are examples of pseudometrics that are invariant
under the removal of empty variables. In Definition 3 we define the Hamming
distance as

DHam : {0, 1}d × {0, 1}d → [0, d], DHam(x,y) = d− x · y − (1− x) · (1− y)

which can be interpreted as the number of positions in which the vectors x and y
differ. An alternate definition for the Hamming distance is

D∗Ham : {0, 1}d × {0, 1}d → [0, 1], D∗Ham(x,y) =
d− x · y − (1− x) · (1− y)

d
,

which can be interpreted as the proportion of positions that differ between the
vectors x and y. This alternate definition for the Hamming distance, D∗Ham, is
the definition used in the MATLAB function kmeans via the pdist function, and
is an example of a pseudometric that is not invariant under the removal of empty
variables. When we use the term ‘Hamming distance’, we refer to Definition 3.

A.3 Matching Bins Between Datasets

I mentioned in the introduction to Section 2.1, an advantage of binning over data-
driven methods such as those described in Section 3.2, is that comparisons of spectra
within a single dataset can be extended to comparisons between multiple datasets
in a natural and computationally efficient way. In this section I will explicitly
define this natural extension of binning to comparisons between multiple datasets in
Algorithm A.2, and briefly discuss the significance of invariance under the removal
of empty variables (Definition 17) to these comparisons.

Let X(1) and X(2) be d1 × n1 and d2 × n2 binned data matrices produced by
Algorithm A.1 with some bin size b from two different peaklist datasets, which I
will refer to as dataset (1) and dataset (2) respectively. If we wish to compare the
two datasets, we would like their rows to correspond to the same m/z bins, which
would allow a natural comparison of spectra from one dataset to spectra in the
other. Algorithm A.2 describes how to modify these data matrices so that their
rows correspond to the same m/z bins. I extend the notation introduced earlier by

adding a superscript to denote dataset; Let m
(ν)
ij be the m/z location of the ith peak

in the jth spectrum of dataset (ν) for ν = 1, 2. Similarly, I extend the notation of
Equation A.1 to get

m
(ν)
min = min

i, j

{
m

(ν)
ij

}
and m(ν)

max = max
i, j

{
m

(ν)
ij

}
for ν = 1, 2, (A.3)
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and the notation of Equation A.2 to get

n
(ν)
first =

⌊
m

(ν)
min

b

⌋
and n

(ν)
last =

⌈
m

(ν)
max

b

⌉
for ν = 1, 2 (A.4)

similarly. Algorithm A.2 modifies X(1) and X(2) by adding empty rows such that
the rows of the modified matrices correspond to the same bins.

Algorithm A.2. Matching bins between two datasets: Using the notation
introduced in Equation A.3 and Equation A.4, and without loss of generality letting
m

(1)
min ≤ m

(2)
min and m

(1)
max ≤ m

(2)
max,

1. Modify X(2) by adding n
(2)
first − n

(1)
first empty rows to produce

[
0

(n
(2)
first−n

(1)
first)×d1

X(2)

]
.

2. Modify X(1) by adding n
(2)
last − n

(1)
last empty rows to produce

[
X(1)

0
(n

(2)
last−n

(1)
last)×d1

]
.

If
(
n

(2)
first − n

(1)
first

)
or
(
n

(2)
last − n

(1)
last

)
are zero, do not modify the data matrix in

(1.) or (2.) respectively.

The modified data matrices produced by Algorithm A.2 are comparable, as their
rows correspond to the same m/z intervals. Comparisons between an arbitrary
number of datasets is possible either by iterative use of Algorithm A.2 or a simple
modification of Algorithm A.2 that involves the maximum and minimum m/z values
across all the datasets considered.

Note that invariance under removal of constant/empty variables (Definition 17) is
equivalent to invariance under the addition of finitely many empty variables. What
this invariance means is that when using a distance that is invariant under the
removal of empty bins comparisons within a dataset do not change when the data
is modified by Algorithm A.2. The fact that comparisons within a dataset remain
the same when the data is modified in order to compare it with other datasets is a
property of binning not shared by most data-driven methods.

A.4 The Binary / Summed Binary Data Equiva-

lence

For sufficiently small bin size the binary binned data and the summed binary binned
data as produced by Algorithm A.1 become the same. For a given dataset, let
X(binary) be the binary binned data matrix and X(summed) be the summed binary
binned data matrix produced by Algorithm A.1 with some fixed bin size b.

Definition 18. Binary / summed binary data equivalence: The binary /
summed binary data equivalence is said to hold (for a particular dataset) for a given
bin size b when,

X(binary) = X(summed)

Using bin sizes for which either the binary / summed binary data equivalence
holds, is important in the context of MALDI-MSI data for a number of reasons,
including:
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• When the binary / summed binary data equivalence holds, there is no spec-
tra with more than one peak in any bin. Having multiple peaks in a single
bin can confuse interpretations as, at least in principle (disregarding measure-
ment errors, which are small), each m/z value should correspond to a different
molecular species and as such it does not make sense to treat them as ‘the
same’ at this level.

• The point above allows for the unambiguous use of non-binary values by sub-
stituting these values for the non-zero entries in the binned matrix produced
by Algorithm A.1. We discuss this in more detail below. We use this to com-
pare the use of these non-binary data types to the binary data in Section 2.3.3,
and consider non-binary data types for classification in Chapter 5.

Let m(1)j,m(2)j, . . . ,m(Nj)j be the sorted (increasing) m/z locations of the Nj

peaks in the jth spectrum of a given dataset in peaklist form.

Definition 19. Bound on the binary / summed binary data equivalence:
The binary / summed binary data equivalence (Definition 18) holds for all bin sizes
b < b∗ where

b∗ = min
j, i∈[2,Nj ]

{
m(i)j −m(i−1)j

}
When the binary / summed binary data equivalence holds, a bijection exists

between peaks in the dataset and non-zero entries of X = X(binary) = X(summed). This
bijection allows us to replace the non-zero entries of X with some other measure of
the presence of the peak they are associated to without any ambiguity as to how
this should be done. Up to now we have only considered the binary “peak exists,
peak does not exist” indicator for peak presence. Some properties that could be
used as a measure of peak presence include:

• Intensity: the maximum height of the peak.

• Area: the integrated area under the peak.

• SNR: the Signal-to-Noise Ratio for the peak.

In Section A.1 we considered only the m/z location of peaks for Algorithm A.1,
and discarded the other properties recorded on each peak. The binary / summed
binary data equivalence (Definition 18) provides us with a method to consider the
other peak properties discarded in Section A.1 in a systematic manner. We further
explore the idea underpinning Definition 19 in Section 2.3.1, where we show how
these ideas can be used to identify an appropriate range for the bin size parameter b
used in the binning (Algorithm A.1). In Section 2.3.3 and Section 4.2 we then make
use of Definition 18 in order to consider alternative indicators for peak presence
such as intensity, area, and SNR in the ovarian and endometrial cancer datasets
respectively.

A.5 Binning with Shifted Bin Locations

As mentioned briefly in Section A.4, in some circumstances binning can be sensitive
to choice of bin locations. Algorithm A.3 is a modification of Algorithm A.1 that
produces binned data with bin centres shifted by some constant c

(−b
2
≤ c ≤ b

2

)
relative to those produced by Algorithm A.1.
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Algorithm A.3. Binning with shifted bins: For a given bin size b > 0 and c(−b
2
≤ c ≤ b

2

)
follow Algorithm A.1 except replace step 1. with

1. Construct (nlast − n1) intervals (bins) of width b and with centres

nfirstb+ c, (nfirst + 1)b+ c, (nfirst + 2)b+ c, . . . , nlastb+ c

(left endpoint open, right closed)

In Section 2.6.2 we consider combined two shifted-bin analyses in order to en-
sure we do not miss any features of interest due to binning artefacts. Similarly in
Section 4.2.1, we try to leverage all the information in the endometrial cancer data
by using shifted-bin analyses in parallel to construct meta-classification rules based
on a majority of the shifted-bin analyses, thereby addressing any sensitivity the
classification may have to choice of bin locations.
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Appendix B

Detailed Consideration of Ovarian
Datasets

In Section 3.1 we considered the application of DIPPS-based feature extraction as
introduced in Chapter 2 to the ovarian cancer data discussed in Section 1.5.1. This
feature extraction method yields a set of DIPPS-features that are good positive
indicators for a subset of interest in the data. We use clustering to identify clusters
subsets of the data roughly corresponding to tissue types, and we compare the sets
of DIPPS-features extracted on the basis of these clusters to investigate within and
between patient variability, ultimately demonstrating that within patient variability
can be sufficiently compensated for in order to detect between patient differences
in these data. In the process of investigating these data in Section 3.1 we focus on
parts of the data that we are particularly interested in — namely between-patient
comparison of cancerous tumour regions. Due to this focus, we omitted details of
the comparisons within patients B and C, and comparisons of non-cancer regions
between patients. Here we include these omitted results, including brief discussion
for completeness.

B.1 Detailed Jaccard Comparisons in Patient B

Figure B.1 shows the Jaccard distance based comparisons analogous to those of
Figure 3.3, but for the clustering results shown in Figure 3.4. The discussion of the
clustering results in Section 3.1.3 leads to some natural consequences in Figure B.1:

• The purple clusters of B2, B3 and B4 show similarity to both the cancer and
stroma of B1. This is expected as these purple clusters contain both cancer
and stroma tissue regions.

• The green clusters of B2 and B4 show similarity to the off-tissue of B1. This is
similarly expected as these green clusters correspond to off-tissue regions. The
salmon and green clusters in datasets B2 and B4 show significant similarity,
both within their datasets, and across datasets, and this is expected for the
same reason — they correspond to off-tissue regions.

• The green cluster of B3 shows similarity to the cancer cluster of B1. Again,
expected because this green cluster corresponds to cancerous tissue. It is par-
ticularly notable that although this green cluster shows similarity to both the
cancer and stroma, it shows stronger similarity to the cancer. The individ-
ual variables responsible for these similarities could potentially be of interest
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Figure B.1: Image representing the Jaccard distance comparisons of Section 3.1.1 of
the cluster memberships of Figure 3.4. A set of DIPPS-features is found for each of
the 16 clusters shown in Figure 3.4 using the feature extraction approach discussed
in Section 2.6.2 and the heuristic cutoff of Definition 12. The image shown above
represents pairwise Jaccard distances between these sets of DIPPS-features. Black
lines separate datasets, with the four pixels within each black divisor corresponding
to the four clusters for that dataset.

for further investigation into molecular markers of tumour heterogeneity, for
example.

• The adipose clusters across all the datasets show good agreement.

Overall, the within-patient comparisons of Figure B.1 agree well with the clus-
tering results of Figure 3.4. If the relationship between the clustering results and
the tissue types demonstrate is kept in mind, then the within-patient comparisons
of Figure B.1 also exhibit a similar degree of reproducibility to the comparisons of
Figure 3.3 between multiple datasets originating from sections of the same tissue
block.

B.2 Detailed Jaccard Comparisons in Patient C

Figure B.2 shows the Jaccard distance based comparisons analogous to those of 3.3
and B.1, but for the clustering results shown in Figure 3.5. In Figure B.2, apart
from the expected effects of the spreading of the adipose area into the off-tissue
area in two of the datasets, strong darkened diagonals are clearly visible. The only
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Figure B.2: Image representing the Jaccard distance comparisons of Section 3.1.1 of
the cluster memberships of Figure 3.5. A set of DIPPS-features is found for each of
the 16 clusters shown in Figure 3.5 using the feature extraction approach discussed
in Section 2.6.2 and the heuristic cutoff of Definition 12. The image shown above
represents pairwise Jaccard distances between these sets of DIPPS-features. Black
lines separate datasets, with the four pixels within each black divisor corresponding
to the four clusters for that dataset.

other thing to note in Figure B.2 is that some of the cancer clusters have a notable
similarity to the stroma clusters, and this could be due to the purple cluster in
some of these datasets (C3, for example) including some surrounding stroma tissue
despite primarily corresponding to cancer tissue.

B.3 Between Patient Comparisons

Before I discuss results and interpretations for the between patient comparisons, I
provide a quick summary of the conclusions from the within patient comparisons for
all three patients:

• Patient A (Section 3.1.2): All the clustering results for patient A agreed
very well, the only notable deviation being the purple clusters of datasets A1
and A2 included some of the thin connective stroma tissue between adipose
regions, which in datasets A3 and A4 are largely grouped into their adipose
clusters. It was also noted that the adipose and stroma clusters where the
least well separated of the four, possibly because of this connective region that
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is clustered with the cancer in A1 and A2 consisting of partly stroma tissue,
but being grouped with the adipose in clusters A3 and A4.

• Patient B (Section 3.1.3): The clustering results for B1 separated four clusters
that corresponded to tissue types reasonably well. In the other three datasets
however, the green cluster did not correspond well to any one tissue type, in
B3 only corresponding to a small part of stroma tissue, and in B2 and B4
corresponding to off-tissue regions. The remaining stroma regions in A2, A3
and A4 being included in the purple cluster for these three datasets.

• Patient C (Section 3.1.4): The data for C2 and C4 showed a degree of speck-
ling, suggesting the possibility of lower quality data. The clustering results for
all four datasets corresponded well to tissue types, with the only notable ex-
ception being that in C2 and C3 the cyan cluster extended somewhat beyond
the tissue and into the off-tissue region — possibly suggesting delocalisation
of some peptides.

Figure B.3 shows the Jaccard distance based comparisons between the four clus-
ters in each of the twelve datasets introduced so far. This constitutes 1176 pairwise
comparisons and makes Figure B.3 difficult to interpret due to the large amount
of information it contains. To aid in the interpretation of Figure B.3 we break it
up into smaller block matrices. The three submatrices separated by black dividing
lines constituting a block diagonal in Figure B.3 are the same matrices shown in
Figure 3.3, Figure B.1 and Figure B.2 respectively — describing the comparisons
within patients A, B, and C respectively. We are interested in the between patients
comparisons, contained in the triangular block matrix above (or equivalently be-
low, as the matrix is symmetric) the aforementioned block diagonal. These between
patient comparisons are split into 3 blocks, corresponding to pairwise comparisons
between the three patients:

• Patient A versus Patient B in the centre top (or left centre),

• Patient A versus Patient C in the right top (or left bottom) and

• Patient B versus Patient C in the right centre (or centre bottom)

of Figure B.3. I will consider each of these pairwise comparison blocks individually.

Patient A vs. patient B

• Off-tissue areas agree well, which is not surprising and only notable because
the green clusters of B2 and B4 that also occur in off-tissue areas agree with
this similarity — supporting the hypothesis that the green clusters extended
into the off-tissue region is only a minor phenomena and not a significant effect,
as these regions are very similar to the off-tissue regions of not only the other
patient B sections but also to the off-tissue regions of the patient A sections.

• Adipose clusters agree well overall. The cyan clusters of patient B show a
notable similarity to the stroma clusters of patient A — this likely reflects
that they contain some stroma tissue, perhaps due to the stroma of patient
B being difficult to differentiate from the adipose. This is further supported
by the fact that B1 (where the adipose cluster does not include stroma) does
not show this similarity to the stroma clusters of the patient A datasets, and
similarly B4 (whose adipose cluster contains the least stroma of B2, B3, and
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Figure B.3: Image representing the Jaccard distance comparisons of Section 3.1.1 of
the cluster memberships of Figures 3.2, 3.4, and 3.5. Black lines separate patients.
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B4 due to its cancer cluster including more stroma than B2 or B3) shows much
less similarity to the stroma clusters of the patient A datasets than B2 or B3.

• The similarity between cancer clusters is visible, although notably weak. The
cancer clusters of patient B additionally show a notable similarity to the stroma
clusters of patient A (stronger than their similarity to the cancer clusters of
patient A), most likely because the cancer clusters in patient B are not well
separated and contain a significant amount of stroma tissue, but nonetheless
this demonstrates that cross-patient similarities in stroma tissue can be de-
tected in this way. This is supported by the fact this similarity between cancer
of patient B and stroma of patient A is much weaker in dataset B1, where the
cancer and stroma are better separated. Also of interest is the similarity be-
tween the stroma cluster of dataset B3 and the cancer clusters of patient A
— indicating perhaps this small region is not just stroma as was believed, but
shares many molecular markers of not only the cancer of patient B, but also
of patient A.

Patient A vs. patient C

• Overall good similarity across all clusters, the only broad exception being the
notable similarity between adipose and stroma clusters in both directions —
possibly simply due to the difficulty to separating these tissue types mentioned
previously.

• The spreading of the cyan clusters into off-tissue regions in C2 and C3 is also
notable by the similarity of the cyan clusters in these datasets to the off-tissue
in patient A.

Patient B vs. patient C

• The cancer clusters of patient B show strong similarity to the stroma of the
patient C datasets, most likely due to how the cancer clusters of patient B tend
to include a significant amount of surrounding stroma tissue. This similarity
is least in B1, whose cancer cluster is best separated from the stroma of the
patient B datasets.

• The adipose clusters of datasets C2 and C3 show a similarity to the off-tissue
clusters of the patient B datasets, which is expected as the cyan clusters in
datasets C2 and C3 extend into off-tissue regions. Otherwise, adipose clusters
match up remarkably well.

• Similarly, and unsurprisingly, the stroma clusters of datasets B2 and B4 (which
extend into off-tissue regions) show strong similarity to the off-tissue clusters
of the patient C datasets.
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Appendix C

Matrix Inverse

Here we provide a derivation of the analytic form for the inverse of a class of matrices
A(a, b, c, d) defined in Equation C.1. First we introduce notation, shorthand, and
preliminary results in Section C.1. We also use many common linear algebra results
throughout, and references for these can be found in Halmos (1958); Brookes (2011).

C.1 Notation and Preliminary Results

C.1.1 A(a, b, c, d)

We will be interested in matrices of the form

A(a, b, c, d) =

[
aIb×b 1b×d
1b×d cId×d

]
=



a 0 0 0 1 1 . . . 1
0 a 0 0 1 1 . . . 1
...

. . .
...

...
. . .

...
0 0 0 a 1 1 . . . 1
1 1 1 1 c 0 . . . 0
1 1 1 1 0 c . . . 0
...

...
...

. . .
...

1 1 1 1 0 0 . . . c


. (C.1)

We will be dealing with matrices of minors of such matrices, and as such some
shorthand notation will be useful:

• Let A \ (i, j) denote the submatrix of A constructed by removing the ith row
and jth column.

• Let A \ (i, .) denote the submatrix of A constructed by removing the ith row,
and A \ (., j) denote the submatrix of A constructed by removing the jth
column.

• Let A \ {(i, j), (k, l)} denote the submatrix of A constructed by removing the
ith and kth rows, and jth and lth columns.

Note that A \ {(i, j), (k, l)} = A \ {(i, l), (k, j)} = A \ {(k, l), (i, j)}. Furthermore if
j > i then A \ {(i, i), (j, j)} = (A \ (j, j)) \ (i, i).

Also, the shorthand notation:

An = A(a, b− n, c, d− n), n ≤ min(b, d) (C.2)

will be useful as dropping the (a, b, c, d) dependence is convenient when these values
are constant, as they will be in the cases we consider.
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C.1.2 Preliminary Results for |A(a, b, c, d) \ (i, j)|
Here we provide expansions of |A(a, b, c, d) \ (i, j)| for all possible (i, j). These
preliminary results will be useful for the derivation in Section C.2.

Case 1: i ∈ [1, b] and j ∈ [b+ 1, b+ d]

If i 6= b,
|A(a, b, c, d) \ (i, j)| = −|A(a, b, c, d) \ (i+ 1, j)|

If j 6= b+ d (A(a, b, c, d) \ (i, j + 1) makes no sense),

|A(a, b, c, d) \ (i, j)| = −|A(a, b, c, d) \ (i, j + 1)|

By symmetry these results also hold if i and j are swapped.

Case 2: i, j ∈ [1, b] and i 6= j

If i 6= b and i 6= j − 1,

|A(a, b, c, d) \ (i, j)| = −|A(a, b, c, d) \ (i+ 1, j)|

If j 6= b and j 6= i− 1,

|A(a, b, c, d) \ (i, j)| = −|A(a, b, c, d) \ (i, j + 1)|

Case 3: i, j ∈ [b+ 1, b+ d] and i 6= j

If i 6= b+ d and i 6= j − 1,

|A(a, b, c, d) \ (i, j)| = −|A(a, b, c, d) \ (i+ 1, j)|

If j 6= b+ d and j 6= i− 1,

|A(a, b, c, d) \ (i, j)| = −|A(a, b, c, d) \ (i, j + 1)|

C.2 Inverse of A(a, b, c, d)

Here we present the derivation for the inverse of a matrix of the form A(a, b, c, d) as
introduced in Section C.1. This derivation is structured by following these steps:

• We find the determinant of a general matrix A(a, b, c, d) in Section C.2.1

• We find the matrix of minors in Section C.2.2. This is done by the fact that
the (i, j)th entry of the matrix of minors is the determinant of the matrix with
the ith row and jth column removed.

• The cofactor matrix can be found from the matrix of minors, M as Cij =
(−1)i+jMij where the subscript ij indicates the (i, j)th element of the matrix.

• The adjoint is the transpose of the cofactor matrix adj(A) = CT . A(a, b, c, d)
is symmetric, and as such adj(A) = C = CT .

• Finally, we combine the previous results to find the inverse in Section C.2.3.
This is done because for an invertible matrix A the inverse can be found from
the adjoint of A, adj(A), as A−1 = 1

|A|adj(A).
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C.2.1 Determinant

Here we derive a closed form for the determinant of a matrix of the form A(a, b, c, d).
Remember the shorthand An = A(a, b− n, c, d− n) for n ≤ min(b, d), which means
A(a, b, c, d) = A0. Expanding the determinant along the first row gives:

|A0| = a|A(a, b− 1, c, d)|+
b+d∑

i=b+1

(−1)i+1|A0 \ (1, i)|

= a|A(a, b− 1, c, d)|+ (−1)bd|A0 \ (1, b+ 1)| (Sec. C.1.2)

= a|A(a, b− 1, c, d)|+ (−1)bd
b∑

i=1

(−1)b+i|A0 \ {(1, b+ 1), (b+ 1, i)}| (expand bth row)

= a|A(a, b− 1, c, d)|+ d

b∑
i=1

(−1)b(−1)b+i|A0 \ {(b+ 1, b+ 1), (1, i)}|

= a|A(a, b− 1, c, d)|+ d

b∑
i=1

(−1)i|A(a, b, c, d− 1) \ (1, i)|

= a|A(a, b− 1, c, d)| − d|A1|+ d(b− 1)|A(a, b, c, d− 1) \ (1, 2)| (Sec. C.1.2)

= a|A(a, b− 1, c, d)| − d|A1|

+ d(b− 1)

b+d−1∑
i=b+1

(−1)i|A(a, b, c, d− 1) \ {(1, 2), (2, i)}|

= a|A(a, b− 1, c, d)| − d|A1|+ d(b− 1)

b+d−1∑
i=b+1

(−1)i|A1 \ (1, i− 1)|

= a|A(a, b− 1, c, d)| − d|A1|+ d(d− 1)(b− 1)(−1)b+1|A1 \ (1, b)| (Sec. C.1.2)

= a|A(a, b− 1, c, d)| − d|A1|

+ d(d− 1)(b− 1)(−1)b+1
b−1∑
i=1

(−1)i+b−1|A1 \ {(1, b), (b, i)}|

= a|A(a, b− 1, c, d)| − d|A1|

+ d(d− 1)(b− 1)

b−1∑
i=1

(−1)i|A(a, b− 1, c, d− 2) \ (1, i)|

= a|A(a, b− 1, c, d)| − d|A1| − d(d− 1)(b− 1)|A2|

+ d(d− 1)(b− 1)

b−1∑
i=2

(−1)i|A(a, b− 1, c, d− 2) \ (1, i)|

= a|A(a, b− 1, c, d)| − d|A1| − d(d− 1)(b− 1)|A2|
+d(d− 1)(b− 1)(b− 2)|A(a, b− 1, c, d− 2) \ (1, 2)| (Sec. C.1.2)

Notice that this derived result is a recursive relation. If we apply this recursion
l times, the lth blue line will be

|A0| = a|A(a, b− 1, c, d)| − d
l∑

k=1

(d− 1)!(b− 1)!

(d− k)!(b− k)!
|Ak|

+
d!(b− 1)!

(d− l)!(b− l − 1)!
|A(a, b− l + 1, c, d− l) \ (1, 2)|

. . .
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Consider the application of this recursion b − 1 times — i.e. the (b − 1)th blue
line would be

|A0| = a|A(a, b− 1, c, d)| − d

b−1∑
k=1

(d− 1)!(b− 1)!

(d− k)!(b− k)!
|Ak|+

d!(b− 1)!

(d− b+ 1)!
|A(a, 2, c, d− b+ 1) \ (1, 2)|

= a|A(a, b− 1, c, d)| − d

b−1∑
k=1

(d− 1)!(b− 1)!

(d− k)!(b− k)!
|Ak| −

d!(b− 1)!

(d− b)!
cd−b.

Notice that a solution to this recursion relation is

|A(a, b, c, d)| = ab−1

(
a− db

c

)
cd = abcd − bdab−1cd−1. (C.3)

To validate, we substitute:

d

b−1∑
k=1

(d− 1)!(b− 1)!

(d− k)!(b− k)!
|Ak| = d

b−1∑
k=1

(d− 1)!(b− 1)!

(d− k)!(b− k)!
(ab−kcd−k − (b− k)(d− k)ab−k−1cd−k−1)

= d(d− 1)!(b− 1)!

[
b−1∑
k=1

ab−kcd−k

(d− k)!(b− k)!
−

b−1∑
k=1

ab−k−1cd−k−1

(d− k − 1)!(b− k − 1)!

]

= d(d− 1)!(b− 1)!

[
b−1∑
k=1

ab−kcd−k

(d− k)!(b− k)!
−

b∑
k=2

ab−kcd−k

(d− k)!(b− k)!

]

= d(d− 1)!(b− 1)!

[
ab−1cd−1

(d− 1)!(b− 1)!
− cd−b

(d− b)!

]
= dab−1cd−1 − d!(b− 1)!

(d− b)!
cd−b.

So

|A0| = a|A(a, b− 1, c, d)| − d
b−1∑
k=1

(d− 1)!(b− 1)!

(d− k)!(b− k)!
|Ak| −

d!(b− 1)!

(d− b)!
cd−b

= a|A(a, b− 1, c, d)| − dab−1cd−1 +
d!(b− 1)!

(d− b)!
cd−b − d!(b− 1)!

(d− b)!
cd−b

= a
(
ab−1cd − (b− 1)dab−2cd−1

)
− dab−1cd−1

= abcd − (b− 1)dab−1cd−1 − dab−1cd−1

= abcd − (b− 1 + 1)dab−1cd−1

= abcd − bdab−1cd−1

= |A0|,

thus validating the solution of Equation C.3.

C.2.2 Matrix of Minors

Here we will derive the matrix of minors for a matrix of the form A(a, b, c, d). We
separate this problem into cases, and find the minors for each case separately.
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Case 1: i = j (diagonal entries)

This case reduces to the general problem of finding |A(a, b, c, d)|, which we have
already solved in Section C.2.1 — |A(a, b, c, d)| is given in Equation C.3. So,

|A(a, b, c, d)\(i, i)| =
{
|A(a, b− 1, c, d)| = ab−1cd − (b− 1)dab−2cd−1 if i ∈ [1, b]
|A(a, b, c, d− 1)| = abcd−1 − b(d− 1)ab−1cd−2 if i ∈ [b+ 1, b+ d]

Case 2: i = 1 and j ∈ [b+ 1, b+ d]

From Section C.2.2(Case 1) we have:

b−1∑
k=2

(d− 1)!(b− 2)!

(d− k)!(b− k)!
|Ak| =

b−1∑
k=2

(d− 1)!(b− 2)!

(d− k)!(b− k)!
(ab−kcd−k − (b− k)(d− k)ab−k−1cd−k−1)

= (d− 1)!(b− 2)!

[
b−1∑
k=2

ab−kcd−k

(d− k)!(b− k)!
−

b−1∑
k=2

ab−k−1cd−k−1

(d− k − 1)!(b− k − 1)!

]

= (d− 1)!(b− 2)!

[
b−1∑
k=2

ab−kcd−k

(d− k)!(b− k)!
−

b∑
k=3

ab−kcd−k

(d− k)!(b− k)!

]

= (d− 1)!(b− 2)!

[
ab−2cd−2

(d− 2)!(b− 2)!
− cd−b

(d− b)!

]
= (d− 1)ab−2cd−2 − (d− 1)!(b− 2)!

(d− b)!
cd−b

and thus also

|A(a, b, c, d− 1) \ (1, 2)| = −
l∑

k=2

(d− 1)!(b− 2)!

(d− k)!(b− k)!
|Ak|+

(d− 1)!(b− 2)!

(d− l)!(b− l − 1)!
|A(a, b− l + 1, c, d− l) \ (1, 2)|

= −
b−1∑
k=2

(d− 1)!(b− 2)!

(d− k)!(b− k)!
|Ak|+

(d− 1)!(b− 2)!

(d− b+ 1)!
|A(a, 2, c, d− b+ 1) \ (1, 2)|

= −
[
(d− 1)ab−2cd−2 −

(d− 1)!(b− 2)!

(d− b)!
cd−b

]
−

(d− 1)!(b− 2)!

(d− b)!
cd−b

= −(d− 1)ab−2cd−2

and so by expanding along the (j − 1)th row (i.e. the jth row of A0), we have
our result:

|A0 \ (1, j)| =
b∑

k=1

(−1)j+k−1|A0 \ {(1, j), (j, k)}|

=
b∑

k=1

(−1)j+k−1|A(a, b, c, d− 1) \ (1, k)|

= (−1)j |A1|+
b∑

k=2

(−1)j+k−1|A(a, b, c, d− 1) \ (1, k)|

= (−1)j |A1|+ (−1)j−1(b− 1)|A(a, b, c, d− 1) \ (1, 2)| (Sec. C.1.2)

= (−1)j
[
ab−1cd−1 − (b− 1)(d− 1)ab−2cd−2

]
+ (−1)j−1(b− 1)

[
−(d− 1)ab−2cd−2

]
(Case 1)

= (−1)j
[
ab−1cd−1 − (b− 1)(d− 1)ab−2cd−2 + (b− 1)(d− 1)ab−2cd−2

]
= (−1)jab−1cd−1
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Case 3: i ∈ [2, b] and j ∈ [b+ 1, b+ d]

We can extend the result from Section C.2.2(Case 2) for |A(a, b, c, d − 1) \ (1, 2)|
to |A(a, b, c, d− 1) \ (1, i)| by the results in Section C.1.2, or by the same recursive
argument as in Section C.2.2(Case 1), either way we obtain the identity

(−1)i|A(a, b, c, d− 1) \ (1, 2)| = |A(a, b, c, d− 1) \ (1, i)| = |A(a, b, c, d− 1) \ (i, 1)|.

So this case reduces to be the same as that of Section C.2.2(Case 2).

|A0 \ (i, j)| =
b∑

k=1

(−1)j+k−1|A0 \ {(i, j), (j, k)}|

=

b∑
k=1

(−1)j+k−1|A(a, b, c, d− 1) \ (i, k)|

= (−1)j+i−1|A1|+
b∑

k=1, k 6=i

(−1)j+k−1|A(a, b, c, d− 1) \ (i, k)|

= (−1)j+i−1|A1|+ (−1)j(b− 1)|A(a, b, c, d− 1) \ (i, 1)|

= (−1)j+i−1|A1|+ (−1)j+i(b− 1)|A(a, b, c, d− 1) \ (1, 2)| (Identity)

= (−1)j+i−1
[
ab−1cd−1 − (b− 1)(d− 1)ab−2cd−2

]
+ (−1)j+i(b− 1)

[
−(d− 1)ab−2cd−2

]
= (−1)j+i−1

[
ab−1cd−1 − (b− 1)(d− 1)ab−2cd−2 + (b− 1)(d− 1)ab−2cd−2

]
= (−1)j+i−1ab−1cd−1

Note that for i = 1 this is the same as Section C.2.2(Case 2), so this result
generalises the result of Section C.2.2(Case 2).

Case 4: i < j and i, j ∈ [1, b]

From Section C.2.2(Case 1), using the result from Section C.2.2(Case 3) we have
that

(−1)b|A0 \ (1, b+ 1)| = −|A1|+ (b− 1)|A(a, b, c, d− 1) \ (1, 2)|
= −

[
ab−1cd−1 − (b− 1)(d− 1)ab−2cd−2

]
+ (b− 1)

[
−(d− 1)ab−2cd−2

]
= −ab−1cd−1.

This gives us that

(−1)b+1|A(a, b− 1, c, d) \ (i, b)| = (−1)iab−2cd−1.

So, similarly to before, expanding along the (j − 1)th row gives us our solution:

|A0 \ (i, j)| =
b+d∑

k=b+1

(−1)j+k|A0 \ {(i, j), (j, k)}|

=
b+d∑

k=b+1

(−1)j+k|A(a, b− 1, c, d) \ (i, k − 1)|

= (−1)j+b+1d|A(a, b− 1, c, d) \ (i, b)|
= (−1)j+idab−2cd−1.
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Case 5: i < j and i, j ∈ [b+ 1, b+ d]

In Section C.2.2(Case 4) we noted that

(−1)b|A0 \ (1, b+ 1)| = −ab−1cd−1.

By the result of Section C.1.2 we know that this means that

(−1)b|A0 \ (1, i)| = (−1)b+iab−1cd−1

for i ∈ [b+ 1, b+ d].
So, again, we obtain our solution by expanding the (j − 1)th row,

|A0 \ (i, j)| =
b∑

k=1

(−1)j+k−1|A0 \ {(i, j), (j, k)}|

=
b∑

k=1

(−1)j+k−1|A(a, b, c, d− 1) \ (i, k)|

= (−1)j+ibab−1cd−2.

Case 6: i > j

Trivially all the other cases generalise by symmetry (|A| = |AT |).

C.2.3 Inverse

In Section C.2.2 we derived the matrix of minors for a general matrix A(a, b, c, d),

Mij =


ab−1cd − d(b− 1)ab−2cd−1 i, j ∈ [1, b] i = j
abcd−1 − b(d− 1)ab−1cd−2 i, j ∈ [b+ 1, b+ d] i = j
(−1)j+idab−2cd−1 i, j ∈ [1, b] i 6= j
(−1)j+ibab−1cd−2 i, j ∈ [b+ 1, b+ d] i 6= j
(−1)j+i−1ab−1cd−1 i ∈ [1, b], j ∈ [b+ 1, b+ d] or j ∈ [1, b], i ∈ [b+ 1, b+ d]

The cofactors (Cij = (−1)i+jMij) are thus

Cij =


ab−1cd − d(b− 1)ab−2cd−1 i, j ∈ [1, b] i = j
abcd−1 − b(d− 1)ab−1cd−2 i, j ∈ [b+ 1, b+ d] i = j
dab−2cd−1 i, j ∈ [1, b] i 6= j
bab−1cd−2 i, j ∈ [b+ 1, b+ d] i 6= j
−ab−1cd−1 i ∈ [1, b], j ∈ [b+ 1, b+ d] or j ∈ [1, b], i ∈ [b+ 1, b+ d]

,

and as |A(a, b, c, d)| = abcd− bdab−1cd−1 = ab−1cd−1(ac− bd) (Equation C.3), we can
conclude that the inverse is

[
A−1

0

]
ij

=
[
A(a, b, c, d)−1

]
ij

=



ac−bd+d
a(ac−bd)

i, j ∈ [1, b] i = j

ac−bd+b
c(ac−bd)

i, j ∈ [b+ 1, b+ d] i = j

d
a(ac−bd)

i, j ∈ [1, b] i 6= j

b
c(ac−bd)

i, j ∈ [b+ 1, b+ d] i 6= j

−1
ac−bd

i ∈ [1, b], j ∈ [b+ 1, b+ d]
j ∈ [1, b], i ∈ [b+ 1, b+ d]

or
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Appendix D

Classification Results for Vulvar
Cancer Data

In Chapter 5 we consider various approaches to the classification of MALDI-MSI
TMA data. Specifically, we investigate the effect variations in pre-processing and
classification method have on LOO misclassification in the endometrial cancer data
of Section 1.5.3. Ultimately, we concluded that CCA variable ranking, and in par-
ticular CCA-LDA, outperformed PCA dimension reduction and that choice of di-
mension reduction approach was the factor having the biggest consistant effect on
classification perfomance. Secondarily, we also demonstrated that choice of data
type also had an consistant effect on classification performance – the choice to use
log-intensity data correlating with better classification performance. Also of inter-
est was that the choice of classification method seemed to have strong interactions
with other factors, such as choice of dimension reduction approach and choice of
data type. Specifically, when paired with CCA-based variable selection on the log-
intensity data, LDA achieved the best classification performance of the methods we
considered.

Here we replicate the analysis presented in Chapter 5 on a different dataset –
the vulvar cancer dataset also described breifly in Section 1.5.3. Figures D.1–D.6
mirror the results of Figures 5.1–5.6 exactly, relating to the vulvar data instead of
the endometrial data.

We discussed and compared these results with the conclusions drawn from the
analysis of the endometrial data in Section 5.6.

143



6

8

10

A
re

a

B
in

ar
y

In
te

ns
ity

Lo
gI

nt
en

si
ty

S
N

Clas. Method

DWD

NB

Figure D.1: Classification Without Dimension Reduction. LOO misclassi-
fication as in Figure 5.1 on the y-axis using DWD or NB vs. data type on the
x-axis.
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Figure D.2: Classification of Dimension Reduced Data. LOO misclassification
as in Figure 5.1 on the y-axis vs. the number of principal components on the x-axis
for the PCA dimension reduced data, or the number of variables retained for the
CCA variable reduced data. The results from using each classification method (NB,
LDA, and DWD) are shown in seperate panels. Within each panel, results from
using each data type are identified by colour. The LOO misclassification refers to
the number of incorrectly classified patients out of 28.
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Figure D.3: Classification With/ Without Restricting to only Cancer An-
notated Spectra. LOO misclassification as in Figure 5.1 on the y-axis vs. the
combination of classification and dimension reduction method used on the x-axis.
The results from using all spectra and using only annotated tumour spectra are iden-
tified by use of solid and dashed lines respectively. The results from using each data
type are identified by a single colour. In cases that include a dimension reduction
step (PCA or CCA), results are only shown for the optimal choice for the number
of dimensions, k, that is the k that achieves the lowest LOO misclassification. In
cases when there are multiple k that achieve equal lowest LOO misclassification, we
choose the smallest of these k.
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Figure D.4: Classification of Binary Data With/ Without Spatial Smooth-
ing. LOO misclassification as in Figure 5.1 on the y-axis vs. the combination of
classification and dimension reduction method selected on the x-axis. The results
from using all spectra and using only annotated tumour spectra are identified by
use of solid and dashed lines respectively. The results from using no smoothing
(τ = 0), weak smoothing (τ = 0.15), or medium smoothing (τ = 0.25) are identified
with colours. The smoothing is described in Section 2.5. In cases that include a
dimension reduction step (PCA or CCA), results are only shown for the optimal
choice for the number of dimensions, k, that is the k that achieves the lowest LOO
misclassification. In cases when there are multiple k that achieve equal lowest LOO
misclassification, we choose the smallest of these k.
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Figure D.5: Classification of Non-Binary Data With/ Without Normalisa-
tion — Part 1: Including Zeroes for Missing Values. LOO misclassification
as in Figure 5.1 on the y-axis vs. the combination of classification and dimension
reduction method selected on the x-axis. The results from using each data type are
shown in seperate panels. The results from using all spectra and using only anno-
tated tumour spectra are identified by two colours respectively accross panels. The
results from not using/ using normalisation are identified by use of solid and dashed
lines respectively. All results shown include zeros for absent peaks when averaging.
In cases that include a dimension reduction step (PCA or CCA), results are only
shown for the optimal choice for the number of dimensions, k, that is the k that
achieves the lowest LOO misclassification. In cases when there are multiple k that
achieve equal lowest LOO misclassification, we choose the smallest of these k.

148



Area

Intensity

LogIntensity

SN

3

10

3

10

3

10

3

10

D
W

D
.C

C
A

LD
A

.C
C

A

N
B

.C
C

A

D
W

D
.N

on
e

N
B

.N
on

e

D
W

D
.P

C
A

LD
A

.P
C

A

N
B

.P
C

A

Normalisation

Without

With

Spectra

All

Annotated

Figure D.6: Classification of Non-Binary Data With/ Without Normali-
sation — Part 2: Not Including Missing Values. LOO misclassification as
in Figure 5.1 on the y-axis vs. the combination of classification and dimension re-
duction method selected on the x-axis. The results from using each data type are
shown in seperate panels. The results from using all spectra and using only anno-
tated tumour spectra are identified by two colours respectively accross panels. The
results from not using/ using normalisation are identified by use of solid and dashed
lines respectively. All results shown do not include zeros for absent peaks when
averaging. In cases that include a dimension reduction step (PCA or CCA), results
are only shown for the optimal choice for the number of dimensions, k, that is the k
that achieves the lowest LOO misclassification. In cases when there are multiple k
that achieve equal lowest LOO misclassification, we choose the smallest of these k.
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